
SOFTWARE-ORIENTED HARDWARE
PREFETCHING AND VECTOR EXECUTION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Neil Adit

December 2024

© 2024 Neil Adit

ALL RIGHTS RESERVED

SOFTWARE-ORIENTED HARDWARE PREFETCHING AND VECTOR

EXECUTION

Neil Adit, Ph.D.

Cornell University 2024

The hardware-software abstraction enables programmers to write high-level al-

gorithms without delving into low-level microarchitectural details. Compilers,

positioned at the interface of hardware and software, perform numerous op-

timizations to enhance performance. Nonetheless, their functionality is lim-

ited by the ISA contract designed by hardware developers. Rethinking this

abstraction can unlock powerful optimizations at the compiler stage. For in-

stance, emerging scalable vector ISAs expose hardware vector length as a pro-

grammable constant to the software, which, with compiler support, can im-

prove vectorization opportunities in addition to code portability. Addition-

ally, hardware prefetchers come with software prefetching knobs to leverage

programmer knowledge for performance gains. However, this control is lim-

ited, unable to influence dynamic prefetching decisions made by the hardware,

which has been shown to cause performance regression in datacenter settings.

This thesis aims to enhance compiler-guided optimizations for autovector-

ization and hardware prefetching. The auto-vectorization evaluation identi-

fies compiler shortcomings with scalable vector ISAs, and proposes ScaleIR

as a prototype, to improve mask representations in the LLVM IR. ProP uses

profile-guided hints to better guide hardware prefetching decisions. Together,

these projects enable compilers to effectively leverage and redefine the software-

hardware abstraction, boosting performance and efficiency.

BIOGRAPHICAL SKETCH

Neil Adit was born to Manju and Sanjay Jhunjhunwala in Patna, Bihar, India

(1995). He grew up in an engineering background—his father, a computer sci-

ence engineer, and mother, a computer science lecturer in Patna University. Neil

enjoyed access to a desktop computer at home since his childhood, which his

father got quite early in 1994, as part of starting a school computer education

startup. Neil was fortunate to be taught by Aftab Ahmad, a math teacher out-

side school from 8th to 10th grade, who introduced him to the enthralling world

of geometry and number theory in a way like no one had before. This newly

found interest in math propelled him towards pursuing a career in science and

technology.

Neil went to the Indian Institute of Technology, Bombay for his combined

bachelor’s and master’s degree (B.Tech + M.Tech) in Electrical Engineering. He

worked with Professor Sachin Patkar for his master’s thesis, on accelerating

sparse matrix solvers on FPGAs using high level synthesis (HLS) tools.

Neil joined the PhD program in ECE at Cornell University in August, 2018.

He was fortunate to be advised by Professor Adrian Sampson. Initially, he

worked with Mark Buckler and Philip Bedoukian on different projects in the

field of efficient computer vision and software-defined manycore systems. His

experience from programming vector-manycore architectures, motivated him

to study auto-vectorizating compilers for next-generation vector ISAs. In ad-

dition, during his graduate studies, he also got the opportunity to do summer

internships at Intel Labs, Microsoft and Google. The promising results from the

Google internship on hardware prefetchers, propelled him to continue collabo-

rating and develop the prefetching work discussed in this thesis.

iii

This document is dedicated to my family and friends.

iv

ACKNOWLEDGEMENTS

I am grateful to all my family, friends and collaborators for supporting me

throughout my graduate career. This has been a long, hard and incredibly sat-

isfying journey, and I’m thankful to everyone I met along the way.

This thesis would not have been possible without the guidance and sup-

port of my advisor, Professor Adrian Sampson. Adrian encouraged me to ap-

proach problems with independent thought and provided invaluable, construc-

tive feedback. After each of our meetings, I left with renewed optimism for the

project—a mindset I hope to carry into my future endeavors. I am also deeply

grateful to the rest of my committee—Professor Zhiru Zhang and Professor

Chris De Sa—for their timely feedback and guidance throughout my graduate

studies.

Before starting graduate school at Cornell, I was fortunate to be advised by

Professor Sachin Patkar during my BTech & Mtech program at IIT Bombay. It

was during this time that I delved deeper into hardware acceleration of sparse

kernels, which ultimately inspired me to pursue PhD programs in systems and

architecture.

I’d like to acknowledge everyone in our research group, CAPRA. I have al-

ways enjoyed our lunch meetings and benefited greatly from the invaluable

feedback on my talks. Phil, thank you for all the jokes and guidance. I learned

so much while working on projects with you, and I sincerely appreciate the time

and effort you invested in mentoring me and providing feedback. Your support

made a significant impact on my dissertation. Mark, you were a great men-

tor, collaborator and friend. I look forward to attending more of your stand-up

shows and seeing the other skills you’ve picked up along the way.

My internship project at Google was a pivotal part of my thesis, and I was

v

fortunate to have two exceptional mentors—Akanksha Jain and Snehasish Ku-

mar. Akanksha, thank you for helping me transition into a new field with ease

and for providing actionable ideas that drove the project forward. You taught

me to be optimistic and our one-on-one meetings were super helpful during the

project. Snehasish, your expertise in compilers and profiling was crucial in nav-

igating the project’s complexities within Google. I am deeply grateful for your

guidance.

I’d like to thank everyone at CSL for keeping the lab space lively and fos-

tering a sense of camaraderie. I am grateful to our 471D group—Zhijing, Yichi,

Chenhui, Peitian, Kailin, Sungbo, and Trishita—for all the fun moments and in-

sightful research discussions. Khalid and Tuan, thank you for the gem5 deep

dives. Nitish, your B-exam was incredibly motivating. Neeraj, thank you for

listening to my rants and giving invaluable suggestions. Jordan, Jimmy, and

Nikita, our cross-country drive needs to become a recurring tradition. Nikita,

you were fantastic at spotting me and hyping me up at the gym. Varun, we

briefly met in CSL/Google but it was fun hiking and dining together.

I was fortunate to have an amazing group of roommates throughout grad

school. Swatah, you were a great cook and your social networking skill intro-

duced me to so many incredible people. Apoorva, you were pretty chill and

made my Seattle transition seamless. Sai, thank you for teaching me how to

play Catan and booking that wonderful campsite at Vermont—we should def-

initely go again together! Yuktha and Shashwat, it was so much fun playing

timer-driven board games, eating banana breads every Sunday and keeping the

sink clean. Yousuf, please keep inviting me over for dinners.

I’d also like to acknowledge a few close friends. Jashan, thank you keeping

me sane throughout grad school. I will miss our lunches at Koko, workouts at

vi

Teagle and piano sessions at James street, but I’m sure we’ll find parallels on the

west coast. Pragya, I’m grateful you joined grad school—it’s been wonderful

having someone so relatable by my side. Reshabh, you are incredibly friendly,

and I’m so glad I met you in Seattle. Shlok, our analytical discussions are a

nice escape from work, and I look forward to continuing them in San Francisco.

Sohan, I’m fortunate to always have you by my side, especially when I need it

the most.

Finally, I would like to acknowledge my parents, whose countless sacrifices

have allowed me to pursue my dreams. I am incredibly fortunate to have both of

you by my side, offering unwavering support throughout my graduate studies.

Mom, you have been my pillar of strength, always optimistic and holding me

accountable. Your encouragement has been invaluable. Dad, your courage in

facing challenges and love for science & engineering, has been a constant source

of inspiration.

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . viii
List of Tables . x
List of Figures . xi

1 Introduction 1
1.1 Vector computation . 3

1.1.1 Vector architectures . 3
1.1.2 Vector ISAs . 5
1.1.3 Auto-vectorizing compilers 6

1.2 Hardware Prefetchers . 6
1.2.1 Prefetcher design principles 7
1.2.2 Types of Prefetchers . 10

1.3 Thesis Overview . 12
1.4 Collaboration, Other Work, and Funding 13

2 Evaluating Compiler Auto-Vectorization for RISC-V Vector 17
2.1 Introduction . 17
2.2 Related Work . 19
2.3 Experimental Setup . 21
2.4 Synthetic Loop Study . 21
2.5 Application Benchmark Study . 24

2.5.1 Unmodified code . 26
2.5.2 Vector math libraries . 27
2.5.3 Vector-scalar width mismatch 29
2.5.4 Dynamic vector length scalability 29
2.5.5 Shuffle pattern detection . 31
2.5.6 Algorithm driven Loop Fusion 34
2.5.7 Vectorizing specific loops 35
2.5.8 Adapt algorithms to the microarchitecture 36

2.6 Solution proposal: Scalable compiler IR 37
2.7 Conclusion . 41

3 Software-Controlled Hardware Prefetching 42
3.1 Introduction . 42
3.2 Motivation . 45

3.2.1 Reactive Throttling . 46
3.2.2 Predictive Throttling . 47

3.3 Profiling Insights . 49
3.3.1 Program counter maps to distinct prefetching behavior . . 50

viii

3.3.2 Code context and data features can enhance prefetching
understanding . 54

3.4 Programmable Prefetching . 56
3.4.1 Profiling Analysis . 56
3.4.2 Communicating Prefetch Hints to Hardware 64
3.4.3 Prefetch Filtering in Hardware 67

3.5 Methodology . 67
3.5.1 Performance Model . 67
3.5.2 Workloads . 68
3.5.3 Profiling methodology . 70
3.5.4 Baselines . 71

3.6 Evaluation . 73
3.6.1 Single core results . 73
3.6.2 Multi-core results . 76
3.6.3 Context-switch sensitivity 77
3.6.4 Bandwidth sensitivity . 81
3.6.5 Workload-specific profile-model tuning 82
3.6.6 Different LLC sizes . 83

3.7 Related Work . 84
3.8 Conclusion . 86

4 Conclusion and Future Directions 87
4.1 Length-agnostic speculative vectorization 87
4.2 Programming model for scalable vectors 90
4.3 Multiple hardware prefetchers . 91

Bibliography 93

ix

LIST OF TABLES

2.1 We propose solutions for compiler auto-vectorization issues and
rate the difficulty from a compiler’s standpoint, ranging from
well-defined engineering fixes (E) to compiler (C) and program-
ming model (P) research problems. The proposals are grouped
(A,B) based on the two evaluation benchmarks. 19

2.2 RiVEC benchmark transformations to aid compiler auto-
vectorization for an objective performance measurement 24

3.1 Simulation configuration . 67
3.2 Workload simulation details . 68

x

LIST OF FIGURES

1.1 Hardware prefetchers (shown in boxes) trade off higher cache
hit rates (higher coverage) for higher memory bandwidth over-
head (lower accuracy). The points roughly represent the default
parameter configurations of prefetchers shown in Fig 3.2. 8

2.1 Auto-vectorized TSVC loops for RVV-VLA and RVV-VLS config-
urations . 22

2.2 Dynamic instruction count speedup over the scalar version us-
ing a vector length of 8. Transformations for the auto-vector con-
figurations are based on Table 2.2, whereas the serial and RiVec
versions are transformed to skip math functions only. 25

2.3 Dynamic instruction scaling across different hardware vector
length in Jacobi-2d plotted on logscale. The overhead of running
scalar instructions (due to non-scalability) increases at higher
vector length for compiler generated code. 31

2.4 Vector memory requests relative to hand-vectorized baseline.
The transformation allows compiler to reduce redundant loads
in both the auto-vectorized configurations. 33

2.5 Instruction selection procedure in LLVM vectorization for fixed
vector-length configuration of RVV. The LLVM IR represents the
data movement across vector registers using the shufflevector

intrinsic using a fixed vector-length mask array. This representa-
tion fails for length-agnostic designs. 37

2.6 Represent shuffle masks using a function of vector-id and scal-
able vector length in the IR. 39

3.1 The benefit of hardware prefetchers shrink with limited band-
width on both Merced (a large datacenter workload) and mcf
(SPEC workload). 46

3.2 Accuracy vs coverage tradeoff for different configurations of IP-
stride, Best Offset (BOP) and Signature Path (SPP) prefetchers,
on Merced and Bravo datacenter workloads. 47

3.3 Context switches are frequent in datacenter workloads, making
it difficult for online throttling schemes to warm up adequately. . 48

3.4 Prefetching accuracies with BOP for each PC in a code region. . . 49
3.5 PC-based SPP prefetcher accuracy histogram, for different accu-

racy bin sizes. A significant portion of prefetching is done for
PCs that are < 30% accurate. PCs themselves, can be a good in-
dicator for prefetching behavior since frequencies of < 10% and
> 90% bins are highest. 51

3.6 PC-based BOP prefetcher accuracy histogram, for different accu-
racy bin sizes. 51

xi

3.7 Aggregated SPP prefetcher accuracies for various libraries called
during the Merced trace execution. foo is an anonymized library
name. 52

3.8 Function-level breakdown of prefetching accuracies 52
3.9 Expected prefetch accuracy if low accuracy (< 30%) features are

filtered out. “No filter” is the baseline prefetcher accuracy. PC,
Page and Call stacks (CS) are features that can be used indepen-
dently or hierarchically to improve overall prefetch accuracy. . . 55

3.10 An overview of the Programmable Prefetching (ProP) system. . . 57
3.11 Fraction of miscategorized PC (%) based on total prefetches is-

sued, decrease with additional level of microarchitectural mod-
eling. The ground truth prefetch accuracy data for PCs is from
gem5 simulation of Merced. 60

3.12 Fraction of miscategorized PC (%) by the profiling model for
all datacenter workloads, for different underlying hardware
prefetchers. The miscategorization error is small in all work-
loads, and generalizes well to both hardware prefetchers 62

3.13 Cumulative density function (CDF) of number of unique PCs (in
log scale) needed to represent prefetch behavior of datacenter
workloads. 65

3.14 Single core IPC improvement over no prefetching for all data-
center workloads at 4GB/s bandwidth 72

3.15 Accuracy-Coverage tradeoff of various prefetcher configura-
tions, averaged across all datacenter workloads. ProP-BOP and
ProP-SPP allows better coverage and accuracy tradeoff, and low
traffic overhead. 74

3.16 Library-level prefetch accuracies with baseline BOP and ProP-BOP. 75
3.17 Single core IPC improvement over no prefetching for SPEC

workloads at 4GB/s bandwidth 76
3.18 IPC speedup for 100 datacenter workload mixes in a 4-core set-

ting at 16GB/s system bandwidth. 77
3.19 IPC speedup for 100 datacenter workload mixes in a 8-core set-

ting at 32GB/s system bandwidth. 78
3.20 IPC speedup averaged for all datacenter workloads, simulated

at different instruction window lengths. 79
3.21 Prefetch traffic and prefetch filtering efectiveness of different

prefetchers at different instruction window sizes. 79
3.22 IPC improvement (%) of ProP-SPP over PPF-SPP across different

instruction windows. 80
3.23 IPC improvement over no prefetching on all datacenter work-

loads, for SPP, PPF and ProP at different system bandwidths. . . 81
3.24 Workload-specific speedup for different prfetchers and profil-

ing thresholds of ProP (default, aggressive, conservative), across
bandwidth configurations. 82

xii

3.25 IPC improvement over no prefetching on all datacenter work-
loads, for SPP, PPF and ProP at different SLC sizes/core. 83

xiii

CHAPTER 1

INTRODUCTION

Hardware and software systems have evolved in complexity over the last

century. Emerging applications demand high computation density, which has

been fueled by Moore’s law (transistor doubling every two years) and Den-

nard scaling (increasing clock frequency without increasing power consump-

tion) over the years. However, as these scaling laws have either stopped or

slowed down considerably, there has been interest in rethinking the hardware-

software abstractions to improve performance and energy efficiency.

The role of compilers, for instance, has shifted from the early years of com-

puting when they were primarily tools for translating high-level code into ma-

chine code, with the primary goal of ensuring correctness and basic optimiza-

tions. Over the years, as the gains from Moore’s Law began to diminish, compil-

ers became critical for squeezing out performance improvements through more

aggressive optimizations, such as loop unrolling [116], vectorization [71, 51],

and profile-guided optimizations [80, 32]. In addition, with slowdown of Den-

nard scaling and power efficiency becoming critical, specialized architectures

such as GPUs, FPGAs, TPUs and other domain-specific accelerators have been

widely adopted. This has led to an explosion in compiler toolchains [73, 119, 70]

targeting specialized architectures and domains, while exposing hardware op-

timizations at the software level.

There are several computing domains where hardware-software co-design

techniques have been incorporated to improve performance and energy effi-

ciency such as custom accelerators for machine learning [20, 45], network pro-

cessing [53] etc. In addition, general purpose micro-architectural components

1

such as branch prediction and cache management have also seem improve-

ments with software-guided approach. Profile-driven compiler hints about

branch outcomes have been shown to improve hardware branch prediction ac-

curacy [9, 59, 47]. Similarly, compilers can provide hints to cache controllers

about evictions of cache lines ahead of time [114, 99]. In this thesis, we’ll focus

on two such domains that can benefit from software-driven co-design optimiza-

tions.

There has been a resurgence in interests for vector architectures, led by

length-agnostic ISAs such as ARM’s Scalable Vector Extension (SVE) [109] and

RISC-V Vector Extension (RVV) [94]. These scalable vector ISAs aim to rethink

the existing contract between hardware and software, to improve programma-

bility and performance of vector architectures. Vector support in hardware al-

lows programmer to exploit data-level parallelism (DLP) in the program, in

addition to hardware support for instruction-level parallelism (ILP) via out-

of-order cores. This software-hardware interaction offloads the overhead of

finding parallelism and coalescing memory accesses of embarrassingly-parallel

workloads with DLP to the compiler, while allocating more compute on-chip.

This leads to an overall improvement in performance and energy efficiency, over

a design with minimal communication between these abstraction layers.

Similarly, hardware prefetchers have a long line of work [103, 44, 7, 75, 19,

31, 50, 98, 69, 106, 21, 117, 105, 118, 22, 40, 41, 88, 100, 62, 48], where sophisticated

prefetcher designs have worked well in reducing memory cache misses and

thereby improving performance on single-core machines. In addition, there has

been a surge in interest towards improving accuracy of hardware prefetchers to

perform well in multi-core settings with limited memory bandwidth [113, 107,

2

49, 11, 74, 76]. However, pure hardware prefetching designs may be reaching a

limit since they focus on what addresses to prefetch (performance-centric) and

which accesses to prefetch on (accuracy-centric), which can require high on-chip

memory and longer warm-up times. We propose that a SW/HW co-design of

prefetchers, which divides responsibilities across the stack, can enable them to

have both—high performance and memory bandwidth efficiency.

1.1 Vector computation

Vector abstractions enable aggregating the same function over multiple data

elements and if efficiently exploited, leads to significant speedup over scalar

computation, for DLP-rich applications. In this section, we discuss three layers

of the software/hardware stack that affects the overall efficiency of vector pro-

cessing, and motivate the need for improved compiler techniques to leverage

emerging vector architectures and ISAs.

1.1.1 Vector architectures

Vector architectures are geared towards exploiting data parallelism in work-

loads by loading chunks of data from memory and performing the same func-

tion over each of them. To this end, a vector architecture typically has three

major components, in addition to a scalar processor:

• Vector memory unit: Performs grouped load/store accesses for different

memory patterns such as contiguous or strided accesses.

• Vector registers: Exploit temporal reuse of data similar to scalar registers.

3

• Vector functional units (VFUs): Supports processing multiple elements in

parallel lanes.

Traditionally, there are two categories of vector architecture designs: long

vector-length decoupled architectures and shorter vector-length packed-SIMD

architectures. The former optimizes high vector performance at the cost of

larger on-chip area, whereas the latter is tradeoff for more efficient scalar com-

pute with modest vector performance, achievable with a scalar-like code.

Long vector architectures: The earliest vector architectures [115, 36] were

memory-to-memory vector machines (no vector registers), which could sup-

port an arbitrary vector length. However, they had poor scalar performance and

vector computations needed long startup times. Cray-1 [96] integrated vector

registers and VFUs with scalar computation, while retaining long vector length

support using chiming. Since then, long vector architecture designs [27, 2] have

added support for complex memory accesses, and work well with scalar out-of-

order cores and multi-core processors.

Packed-SIMD: Packed-SIMD [77, 25, 38, 5] architectures are typically smaller

vector units that have a 1:1 mapping of vector register elements and functional

unit lanes. These architectures tradeoff some vector performance for lower area

overhead. Packed-SIMD architectures support cross element functions such as

vector shuffles and reductions, due to small number of lanes. However, they

typically avoid supporting additional control overhead for masking lanes which

requires scalar processing of loop tails.

Next-generation vector architectures lie on this tradeoff space of long-vector

4

performance and packed-SIMD area overhead. For instance, reconfigurable de-

signs [10, 111, 120] can functionally mimic large vector processors while main-

taining minimal area overhead like packed-SIMD architectures.

1.1.2 Vector ISAs

There are two classes of vector ISAs: (1) fixed vector length ISAs, designed for

packed-SIMD architectures that have a fixed vector length; and (2) scalable vector

ISAs, designed for a more expansive set of vector architectures, and inspired

by traditional architectures such as Cray-1 [96], which supports variable vector

lengths via chiming.

Fixed vector length ISAs: Fixed vector length ISAs [77, 38, 5], or SIMD ISAs,

bake the hardware vector length in the instructions and often do not provide

predicate-masking support to use a “smaller” vector length. SIMD instructions

often require extensive loop unrolling to keep hardware pipelines busy but puts

additional pressure on instruction caches. No predication also incurs an addi-

tional overhead of handling scalar loop tails.

Scalable vector ISAs: Emerging scalable vector ISAs [109, 94] abstract the vec-

tor length out of the instruction and let the programmer tailor the effective vec-

tor length. For instance, RISC-V Vector extension (RVV) [94] provides an in-

terface to configure the hardware vector length using vsetvl instruction. Arm

Scalable Vector Extension (SVE) [109] uses predicate-based loop directives such

as whilelt to dynamically configure vector lanes and enable loop tail vectoriza-

tion. These “scalability” features have been shown to improve vector utilization

5

by providing finer-grained control of vector length and supporting predicate-

based vectorization of complex control-flow, in addition to better portability

across machines with different vector lengths [109].

1.1.3 Auto-vectorizing compilers

Compiler toolchains such as GCC [34] offer support for automatic vectoriza-

tion [33] to exploit DLP in programs, as an alternative to manual intrinsic-based

programming. Loop vectorization and SLP vectorization [51, 86, 87, 61] are the

two main compiler vectorization techniques. Since loops express parallelism

over variable loop bounds, they provide better vectorization opportunities for

scalable vector lengths. In the past, various improvements to loop vectorization

have been proposed to identify interleaving memory patterns [71], vectorize

outer loops [72], and loops with control flow [110, 8].

These vectorization techniques were developed for fixed vector-length ISAs,

where vector length is known at compile time. Next-generation vector archi-

tectures and scalable ISAs pose a challenge for compiler techniques to improve

code-generation for dynamic vector length and support complex memory gath-

er/scatter and predicate instructions that were restricted in early packed-SIMD

designs.

1.2 Hardware Prefetchers

Hardware prefetchers hide memory latency by fetching a memory block in an-

ticipation of the program accessing it in the near future. Since memory latencies

6

are much higher compared to processor speeds, accurately fetching blocks be-

forehand can reduce backend memory-bound stall cycles. However, prefetch-

ing a future block consumes memory bandwidth that also needs to service the

current miss. Fundamentally, this creates a tradeoff between prefetcher cover-

age and traffic overhead. Hence, an aggressive prefetcher with complex strate-

gies could end up increasing memory bandwidth contention and overall mem-

ory latency in a bandwidth-constrained environment, but work well if lots of

spare bandwidth is available. We discuss design principles and existing types

of prefetchers, to understand tradeoffs in hardware prefetchers.

1.2.1 Prefetcher design principles

Prefetcher designs have revolved around three fundamental questions: 1. what

addresses to prefetch, 2. when to initiate prefetch requests and 3. where to place

the prefetch data.

What addresses to prefetch. This decision can influence metrics such as cache

miss rate, bandwidth usage and cache pollution. Cache miss rate reduction is

defined by coverage, which is the fraction of demand misses that were prefetched

by the hardware prefetcher. On the other hand, bandwidth consumption de-

pends on prefetcher accuracy, which is defined as fraction of used prefetches

over total prefetches issued. A poor prefetcher accuracy results in an in-

creased bandwidth consumption. Various prefetching algorithms have been

proposed to determine which addresses to prefetch based on a history of de-

mand accesses, ranging from instruction-pointer stride (IP-stride) prefetcher [7]

to sophisticated irregular pattern-predicting prefetchers [48]. Ideally, hardware

7

Coverage

A
cc
ur
ac
y

BOP
SPP

Stride

Conservative

Aggressive

Ideal

Figure 1.1: Hardware prefetchers (shown in boxes) trade off higher cache hit
rates (higher coverage) for higher memory bandwidth overhead (lower accu-
racy). The points roughly represent the default parameter configurations of
prefetchers shown in Fig 3.2.

prefetchers would have both: high coverage and high accuracy. However, Fig-

ure 1.1, which approximately represents data from Chapter 3, conveys that re-

cent prefetcher designs such as Best Offset Prefetcher (BOP) [62] and Signature

Path Prefetching (SPP) [48] tend to be aggressive and tradeoff prefetcher accu-

racy for higher prefetcher coverage.

When to initiate prefetch requests. A prefetcher can choose to prefetch an ad-

dress upon all demand accesses or just a subset of those. Prefetching on all ac-

cesses can result in excess traffic. Tagged prefetching [35] showed that prefetch-

ing on demand misses or demand hits due to previously prefetched blocks, can

get similar coverage as prefetching on all accesses without the excess traffic

8

overhead. In addition, the prefetcher also decides how far ahead to prefetch

a data address. Prefetching the “next” element in the stream might not be timely

enough to hide the entire memory latency. Stream buffer [44] improved timeli-

ness by prefetching multiple lines ahead. Similarly, IP-stride [7] and SPP [48],

have lookahead degrees to prefetch further into the stream. BOP uses a cache-

fill notification-based feedback mechanism to tune offsets to make prefetching

more timely. Since prefetching ahead comes at a cost of lower prefetching con-

fidence, it also leads to lower prefetcher accuracies.

Where to place the prefetch data. Prefetchers can either prefetch directly into

caches or a privately held buffer. Stream buffers [44] introduced additional

buffers for different streams with lookahead data addresses to ensure timeliness

whithout polluting the cache. However, to avoid the extra hardware cost and

complexity in memory system, prefetchers tend to prefetch directly into cache.

This can result in cache pollution if the prefetcher is not accurate. To avoid this

issue, prefetchers either throttle prefetching (BOP turns off prefetching below a

bad score) or prefetch at higher level caches that are larger (SPP prefetches into

L2/LLC based on confidence thresholds) to avoid polluting the cache.

Improving prefetcher accuracy without decreasing coverage or increasing

hardware complexity, can resolve issues across all the 3 fundamental design

principles of prefetchers and move state-of-the-art prefetchers closer towards

an ideal design, as shown in Figure 1.1.

9

1.2.2 Types of Prefetchers

Coverage-optimized hardware prefetchers: These prefetcher designs tend to

optimize for coverage by improving memory access pattern detection.

Sequential-line prefetching [102], or one block lookhead (OBL) [103] are sim-

ple prefetcher designs that prefetch the next block i + 1 upon access of block i.

Stream buffers [44] introduced separate buffers per stream to store lookahead

prefetches for improved timeliness (better latency hiding) and avoiding cache

pollution. Further improvements to stream buffers added support for non-

unit strides [75], improved stride prediction using confidence counters [19] and

Markov predictors [98], spatial bitmaps for recurring spatial locality [50, 106]

and support for more complex stride patterns [40, 100, 48].

Bandwidth-efficient hardware prefetchers: As discussed in Section 1.2.1,

prefetcher designs have a tradeoff between coverage and accuracy (or band-

width overhead). This class of prefetchers primarily focus on improving ac-

curacy of the underlying prefetchers. Typically there 2 sub-classes: (1) throttle

prefetchers, which uses a feature such as stream length or prefetch accuracy in a

region, to reactively filter prefetches; (2) composite prefetchers consists of accu-

rate sub-prefetchers which detect and prefetch a narrow class of memory access

patterns.

1. Throttle prefetchers: Adaptive stream detection (ASD) [37] measures ag-

gregated stream length histogram (SLH) for all streams in a program re-

gion. ASD uses SLH to stop prefetching if the likelihood of the stream

ending is high, to avoid prefetching a useless address. FDP [107] uses dy-

10

namic metrics such as prefetcher accuracy and cache pollution, to control

aggressiveness of the prefetcher. For instance, if the prefetcher accuracy

is below a threshold, FDP throttles the stream prefetcher by decreasing its

degree and lookahead distance. Unlike the previous two uniform throt-

tling mechanisms, Perceptron filter (PPF) [11] is a hardware-based fine-

grained prefetch filtering mechanism for Signature Path Prefetcher (SPP).

PPF trains a perceptron model using a set of nine features based on page

addresses, program counter and other SPP metrics such as confidence, and

filters SPP candidates if the perceptron weights are below a threshold.

2. Composite prefetchers: Unlike filtering techniques that aim at improv-

ing accuracy of the underlying state-of-the-art prefetcher, an alternate

bandwidth-efficient design is to use a mix of simpler prefetchers for differ-

ent memory access patterns. Division of Labor (DOL) [49] detects strided

instructions by identfying loops, and pointer chains based on program

semantics, and uses this classification to prefetch via specialized prefetch-

ers. Instruction pointer classifier-based prefetching (IPCP) [74] uses con-

fidence of a sub-prefetchers to classify memory accesses for each instruc-

tion pointer at L1D. Both these work, reflect the importance of identify-

ing memory accesses that work best with the corresponding hardware

prefetcher to improve accuracy and coverage.

Software-guided hardware prefetchers: Unlike previous classes of pure

hardware-based prefetching, this class uses hints from the compiler to guide

hardware prefetching decisions.

Guided-region prefetching (GRP) [113] uses compiler static-analysis to de-

tect loop bounds of load instructions, and classify instructions based on memory

11

access patterns. The loop bounds, if statically discernible, is used to guide the

underlying region prefetcher [56] to limit the size of prefetching region, thereby

reducing traffic overhead. Efficient content-data prefetching (ECDP) [26] uses

profile-guided hints to score all possible prefetch offsets in a physical page, for

each pointer-based instruction. ECDP communicates a 16-bit one-hot encoded

prefech hint with each pointer instruction, to filter prefetches by the underlying

linked data structure (LDS) prefetcher [23].

1.3 Thesis Overview

Co-designing hardware-software systems together provides additional oppor-

tunities of exploiting performance and efficiency. In case of emerging vector ar-

chitectures, new ISA designs provide software abstractions that compilers can

exploit for new vectorization avenues. On the other hand, hardware prefetcher

designs are limited by on-chip cost and limited view of the program, and can

leverage higher efficiency with software hints and programmability. This the-

sis discusses our work on using compiler and profiling techniques to improve

performance on vector architectures and hardware prefetchers, detailed in the

following two chapters.

Chapter 2 explores the auto-vectorizing ability of compilers for emerging

scalable vector ISAs. It identifies issues with compiler toolchains like LLVM,

which have mature vectorization passes for fixed-length ISAs, but do not per-

form well with scalable vector ISAs. To this end, we make the following contri-

butions: (1) we distill a set of recommendations aimed at improving compiler

design, based on our evaluation across a set of synthetic loop benchmark and

12

real benchmark suite with hand-vectorized code for comparison; and (2) pro-

pose ScaleIR to improve vector representations in the compiler IR stage, which

leads to better instruction selection in the backend.

Chapter 3 details the problem of hardware prefetchers consuming high

bandwidth, thereby adversely affecting performance in multi-tenant datacenter

setting. One solution for high accuracy is to rely on software prefetching, but its

dependence on programmer or compiler guidance hurts it’s universal adoption.

An alternative solution is hardware-based throttling mechanisms that can iden-

tify bad regions or accesses for prefetching. However, these solutions tend to

be reactive and workload-sensitive, rendering poor results at a datacenter scale.

We explore a design point with a hardware-software division, where software

determines which code to prefetch and hardware is responsible for which data to

prefetch for it, and when. To this end, we make the following contributions: (1)

we identify and evaluate issues with existing hardware throttling mechanisms,

(2) evaluate efficacy of code-based features such as Program Counter (PC) for

identifying prefetch usefulness for datacenter workloads, and (3) propose a Pro-

grammable Prefetching (ProP) paradigm to use profile-guided hints to improve

performance of various state-of-the-art hardware prefetchers in bandwidth con-

straint settings.

1.4 Collaboration, Other Work, and Funding

I led the projects described in Chapter 2 and Chapter 3, while collaborating with

various people.

Tuan Ta, Khalid Al-Hawaj, Professor Christopher Batten and Professor

13

Adrian Sampson contributed to Chapter 2. Tuan Ta and Khalid Al-Hawaj pro-

vided us with the gem5 implementation of RISC-V vector (RVV) extension. In

addition, Christopher Batten, Khalid Al-Hawaj, and Tuan Ta, provided us valu-

able feedback and discussion. I extended the public benchmark suite for com-

patibility with latest compiler autovectorizer, extended gem5 to increase sup-

port for RVV instructions emitted by the compiler, modifed compiler IR and

implemented backend passes for LLVM. The compiler evaluation work was

published in IEEE Mirco Special Issue, 2022 [3].

Chapter 3 was performed in collaboration with Google. Akanksha Jain,

Snehasish Kumar and Professor Adrian Sampson contributed to this work.

Akanksha Jain provided insights into existing hardware prefetcher issues at

datacenter scale, and ideas for profiling algorithms to determine prefetch hints.

Snehasish Kumar gave valuable feedback on profiling datacenter workloads,

and evaluating different code and data features to enhance prefetch understand-

ing. I implemented profiling models to generate software hints, designed the

architecture and extended gem5 modeling for the final evaluation.

I contributed to a few other projects in addition to the work described above.

I worked on an activation pruning technique [15], led by Dr. Mark Buckler,

to retain dense computation while achieving speedup on efficient CNNs like

MobileNetV2. This work proposed pruning activation inputs to the 1×1 convo-

lutions using Discrete Cosine Transform (DCT). Individual channel sensitivity

to frequency pruning varies, but is monotonic with respect to frequency. This

property allows us to perform fine-grained dense pruning in the network and

achieve speedup with minimal accuracy reduction. I implemented a training

method to learn the pruning masks while refining the network accuracy, alterna-

14

tively. We demonstrate the method on CIFAR100 and ImageNet, and show im-

proved compression with lower accuracy degradation than other related prun-

ing works.

Dagger [52, 53], led by Nikita Lazarev, offloads the entire RPC stack on a

FPGA-based NIC and leverages tight CPU-NIC coupling using NUMA inter-

connects. I led the effort to improve RPC throughput between the CPU and

NIC interface. To this end, we enable parallel RPC requests on multiple cache

lines of the shared interconnect and use a load balancer to schedule incoming

RPCs. Dagger is able to achieve the lowest median round-trip latency and a

high throughput of RPC requests among existing RPC acceleration fabrics.

Software-defined vectors (SDV) [10], led by Dr. Philip Bedoukian, explores

dynamically reconfiguring manycore tiles into vector groups to bridge the gap

between MIMD and SIMD architectures on the same fabric. We leverage a de-

coupled access/execute (DAE) scheme to centralize wide coalesced loads using

a scalar core leading a vector group. I worked on formalizing synchronization

guarantees for prefetching accesses by the decoupled run-ahead scalar core, into

the scratchpad of vector cores. SDV achieved a speedup of 1.7× over optimized

MIMD execution while saving 22% energy.

This thesis describes research supported in part by the Intel and NSF joint

research center for Computer Assisted Programming for Heterogeneous Archi-

tectures (CAPA), in part by the NSF under Awards 1845952 and 1723715, and in

part by Air Force Research Laboratory (AFRL) and Defense Advanced Research

Projects Agency (DARPA) under Grant Agreement FA8650-18-2-7863. The U.S.

Government is authorized to reproduce and distribute reprints for Governmen-

tal purposes notwithstanding any copyright notation thereon. The views and

15

conclusions contained herein are those of the authors and should not be inter-

preted as necessarily representing the official policies or endorsements, either

expressed or implied, of Air Force Research Laboratory (AFRL) and Defense

Advanced Research Projects Agency (DARPA) or the U.S. Government.

16

CHAPTER 2

EVALUATING COMPILER AUTO-VECTORIZATION FOR RISC-V

VECTOR

2.1 Introduction

Data-parallel code is abundant in scientific computing and ML driven applica-

tions. To take advantage of regular computation, hardware units are increas-

ingly adopting vector processing. However, there exists a gap between pro-

gramming applications with minimal hardware primitives and compiling them

down to efficiently utilize hardware resources.

Commercial hardware like GPUs “bridge” this gap by using an implicit

vectorization-based programming model and offloading the vectorization ef-

forts to the hardware. GPUs use a SPMD (Single Program Multiple Data) pro-

gramming model, which allows the programmer to write thread-level parallel

code for a single core and dynamically use vector instructions. However, this

programmability comes at a cost of dedicated hardware to dynamically coalesce

memory requests.

Traditional SIMD-style vector processors are programmed using two ways:

manually using intrinsics and compiler auto-vectorization. Compiler auto-

vectorization [51, 71, 72] has been well studied to alleviate the effort of manual

programming of vector processors. However, programming models and com-

piler support for vector processors are still evolving. The need for improved

auto-vectorization is accentuated due to constantly changing hardware (increas-

ing vector length, newer vector instructions) and newer applications.

17

Typically, vector ISA extensions in the past have evolved in lockstep with

the hardware, which requires reprogramming efforts for new vector design. A

new wave of length-agnostic vector ISAs, led by ARM SVE [109] and RISC-V’s

vector extension [94] addresses this issue by decoupling the ISA from the hard-

ware. This introduces newer challenges to the fundamental designs of the com-

piler toolchain built around fixed-length extensions and requires a rethinking

for programming scalable vectors.

This chapter seeks to understand how auto-vectorizing compilers need to

evolve to fully exploit length-agnostic ISAs. We perform two empirical evalu-

ations to study compiler auto-vectorization in the context of the RISC-V vec-

tor (RVV) extension and the LLVM compiler infrastructure. First, we use a

set of synthetic loops with broad coverage to identify auto-vectorization dif-

ferences between fixed-length and length-agnostic ISAs. Next, using a set of

data-parallel applications with hand-vectorized implementations, we measure

the performance gap between intrinsic-based programming and compiler auto-

vectorization configurations. To further understand this gap, we transform the

applications’ scalar code to model improvements in the compiler and program-

ming model, and measure their impact on closing-in the gap.

We compile a list of proposals in Table 2.1, based on the issues we find

from both the evaluations and estimate the difficulty of each proposal. We see

these potential improvements as an outline for future work on rethinking auto-

vectorization in the context of RISC-V and other scalable vector ISAs.

18

Table 2.1: We propose solutions for compiler auto-vectorization issues and rate
the difficulty from a compiler’s standpoint, ranging from well-defined engineer-
ing fixes (E) to compiler (C) and programming model (P) research problems.
The proposals are grouped (A,B) based on the two evaluation benchmarks.

Proposals Difficulty

A

Standardize IR representation (C) ⋆ ⋆ ⋆
Runtime vector-length based analysis (E) ⋆
Multi-length SLP vectorization (E) ⋆⋆
Vector reduction in dynamic loop (E) ⋆

B

Math library vectorization for RISC-V (E) ⋆
Infer scalar width from vector code (C) ⋆⋆
Dynamic vector length scalability (C) ⋆ ⋆ ⋆
Shuffle pattern detection (C) ⋆ ⋆ ⋆
Algorithmic loop fusion (P) ⋆ ⋆ ⋆ ⋆ ⋆
Vectorizing specific loops (C,P) ⋆ ⋆ ⋆⋆
Tune algorithm to µarch (P) ⋆ ⋆ ⋆ ⋆ ⋆

2.2 Related Work

Parallel processing. There are two opposing styles for parallel processing:

MIMD-based manycores [24, 68] and SIMD-based vector processors [97, 28].

Software Defined Vectors [10] tries to bridge this gap using reconfigurable vec-

tor groups on a manycore fabric. An emerging trend of scalable vector proces-

sors and manycore architectures demands better compiler and programming

support for widespread accessibility.

Vector compiler evaluation. Maleki et al. [60] evaluated compiler auto-

vectorization in GCC, Intel C Compiler (ICC) and IBM’s XLC compilers for

128-bit fixed-length vector ISAs and proposed an extended version to the

original TSVC (Test Suite for Vectorizing Compilers) benchmark [16]. Subse-

quently, additional compiler evaluations [90, 63, 101] have focused on advanced

fixed-vector extensions: AVX2 and AVX-512. Prior work on evaluating next-

generation vector compilers [85, 83] has focused on comparing ARM SVE with

19

ARM Neon and Intel AVX fixed-length ISAs. The prior work’s focus on compar-

ing between compilers leads them to focus only on the loops that are feasible to

vectorize with current compilers. In this chapter, we evaluate RISC-V and our

goal is not only to bridge the gap between fixed- and scalable-vector designs,

but also to understand the remaining gap with hand-vectorized code.

Auto-vectorization. Loop vectorization and SLP vectorization [51, 86, 87, 61]

are the two main compiler vectorization techniques. Since loops express paral-

lelism over variable loop bounds, they provide better vectorization opportuni-

ties for scalable vector lengths. In the past, various improvements to loop vec-

torization have been proposed to identify interleaving memory patterns [71],

vectorize outer loops [72], and loops with control flow [110, 8]. These tech-

niques have revolved around traditional fixed vector-length ISAs. We explore

loop optimization opportunities in context of vector length-agnostic designs.

Vector programming models. Higher level algorithmic optimizations are

out of scope for compiler vectorization and provide an opportunity for vec-

tor programming models in higher-level languages [93, 95, 29, 30, 81, 55] and

DSLs that compile to vector ISAs [89]. Pohl et al. [84] evaluated existing vec-

tor programming models in C++ and showed a wide gap between them and

manual-intrinsic programming. In addition, programming models tend to bake

the vector length requirements in the library making them incompatible for

length-agnostic ISAs. An improved model in context of length-agnostic design,

along with compiler modifications can enhance the way scalable vectors are

programmed.

20

2.3 Experimental Setup

Our experiments use a recent source version of LLVM Clang 15.0.0 [57]. We

evaluate auto-vectorization for RVV and AVX-512 extensions. All configura-

tions - scalar, hand-vector and auto-vector are compiled with -Ofast flag, which

enables math library approximations in addition to -O3 optimizations. The

scalar and hand-vector configurations are compiled with -fno-vectorize, -

fno-slp-vectorize to disable any compiler auto-vectorization. The auto-vector

configuration for AVX-512 is also compiled with -fveclib=libmvec which al-

lows LLVM to vectorize math lib calls using GLIBC vector math library.

Auto-vectorized versions can have three configurations: RVV Vector Length

Specific (RVV-VLS), RVV Vector Length Agnostic (RVV-VLA) and Intel AVX-

512. The LLVM compilation flag for VLA is -scalable-vectorization=on, VLS

is -riscv-v-vector-bits-min=N, where N determines the fixed vector width and

AVX-512 is -mavx512f -mavx512cd which enables fixed vector length of 512 bits.

We extend the gem5 simulator [13] to support RISC-V vector instructions

to evaluate performance. We use the Atomic CPU model to measure dynamic

instruction based statistics. We profile dynamic instruction count for AVX-512

natively on Intel Xeon Gold 6230 using perf and compare the auto-vectorzied

instruction speedup to RISC-V counterparts.

2.4 Synthetic Loop Study

We first study the breadth of LLVM’s support for auto-vectorization for RISC-V

using TSVC benchmark. We compile all 151 loops from TSVC benchmark and

21

13 loops

0 loops

82 loops

RVV-VLS RVV-VLA

Total loops: 151

Figure 2.1: Auto-vectorized TSVC loops for RVV-VLA and RVV-VLS configura-
tions

measure auto-vectorization differences between RVV VLS and VLA configura-

tions. We use the instruction count speedup as a metric for compiler vectoriza-

tion performance and define it for a configuration, c as:

speedupc =
Dynamic instruction count of scalar config

Dynamic instruction count of config, c
(2.1)

Figure 2.1 shows that RVV-VLS auto-vectorizes 13 loops in addition to 82

loops vectorized in both configurations. Among the 82 commonly vectorized

loops, RVV-VLS and RVV-VLA have a geometric average of 7× and 6.3× in-

struction count speedup respectively over the scalar version for a vector length

of 8, but have a few loops with differences in instruction selection. In addi-

tion, 13 loops are only auto-vectorized in RVV-VLS configuration because they

22

need compile-time fixed vector length for vectorization passes. We discuss these

cases below and propose relevant solutions, also summarized in Table 2.1(A):

• Instruction selection differences: VLS configuration can select strided

loads (vlse) whereas VLA relies on the more general indexed loads

(vluxei) for memory access pattern like below:

for(int i = 0; i < N; i+=2){

a[i] = a[i - 1] + b[i];

}

This is due to an underlying compiler representation issue for length ag-

nostic ISAs. In general, the offsets of a gather instruction and shuffle

masks cannot be represented as a numerical array since vector length is

unknown for VLA, which hampers the backend instruction selection pro-

cedure.

Standardize IR representation and backend passes for gather offsets and shuffle

masks to be length agnostic.

• Loop carried dependence analysis: To vectorize a loop, dependence

width should be greater than vector length. However, vector length is

unknown for VLA at compile-time but could be speculated [110].

Dynamically check hardware supported vector length to conditionally execute

vector code.

• SLP vectorization: Merging fixed number of instructions based on vector

length.

Emit SLP vectorized code for cost-effective vector widths and dynamically execute

one of them based on hardware vector length.

23

Table 2.2: RiVEC benchmark transformations to aid compiler auto-vectorization
for an objective performance measurement

Name Suite Transformations

Blackscholes PARSEC Skip Math function
Canneal PARSEC Loop fusion
Jacobi-2D PolyBench Restrict to non-aliasing memory; Sim-

plify 2D access
Pathfinder Rodinia Restrict to non-aliasing memory; Sim-

plify memory access pattern
Particle Filter Rodinia —
Streamcluster PARSEC —
Swaptions PARSEC Skip Math function; Inline function calls;

Loop interchanging

• Product reductions: Final reduction across vector register needs to be un-

rolled by the factor of vector length.

Perform vector register reduction in a loop.

• Reverse loop traversal: Vector memory requests need register reversal but

the shuffling cost is undefined for VLA RISC-V backend.

Define the reversal cost for RISC-V backend.

2.5 Application Benchmark Study

To complement the synthetic loop study in the previous section, we also mea-

sure real benchmarks. For this study, we need a benchmark suite with existing

hand-vectorized implementations for RISC-V. As far as we are aware, only one

such suite exists: RiVec [91]. We extend the benchmark suite to work with the

upstream LLVM repository, which now supports RVV v1.0.

We begin by comparing the performance of the hand-vectorized and auto-

24

bla
cks

cho
les

jac
ob

i-2
d

pa
rtic

lef
ilte

r

pa
thf

ind
er

str
ea

mclu
ste

r

can
ne

al

sw
ap

tio
ns

Geo
Mea

n
0

2

4

6

8

10

Dy
na

m
ic

in
st

ru
ct

io
n

co
un

t s
pe

ed
up

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

5.9 5.7

2.1

6.0

4.3

1.4

4.4
3.8

1.0

6.5

1.1

7.2

5.8

1.0 1.0

2.2

1.0

6.2

1.1

6.9

4.9

1.0 1.1

2.2

9.3

7.3

1.1

10.5

5.2

1.1 1.2

3.4

Scalar
RiVEC
Auto-RVV-VLS
Auto-RVV-VLA
Auto-AVX-512

(a) Unmodified benchmarks.

bla
cks

cho
les

jac
ob

i-2
d

pa
rtic

lef
ilte

r

pa
thf

ind
er

str
ea

mclu
ste

r

can
ne

al

sw
ap

tio
ns

Geo
Mea

n
0

2

4

6

8

10

12

Dy
na

m
ic

in
st

ru
ct

io
n

co
un

t s
pe

ed
up

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

6.8

5.7

2.1

6.0

4.3

1.4

5.0

3.9

11.9

5.8

1.1

6.0 5.8

1.4 1.4

3.4

11.8

5.6

1.1

5.6
4.9

1.4 1.4

3.3

11.3

6.2

1.1

8.4

5.2

1.3 1.5

3.5

Scalar-T
RiVEC-T
Auto-RVV-VLS-T
Auto-RVV-VLA-T
Auto-AVX-512-T

(b) Transformed benchmarks (labeled as −T)

Figure 2.2: Dynamic instruction count speedup over the scalar version using a
vector length of 8. Transformations for the auto-vector configurations are based
on Table 2.2, whereas the serial and RiVec versions are transformed to skip math
functions only.

25

vectorized versions of the benchmarks, unmodified. This initial measurement

reflects the performance gap on a current LLVM with no programmer cooper-

ation whatsoever. To understand the makeup of this gap, we then conduct a

series of experiments to measure the influence of compiler optimizations, pro-

grammer effort, or changes in the programming model. Each experiment care-

fully modifies the auto-vectorized source code in a specific way to approximate

the impact of a potential change. Table 2.2 lists the modifications for each ap-

plication. We use these experiments to quantify the potential impact of an im-

provement in compilation or programming for vector ISAs.

2.5.1 Unmodified code

Figure 2.2a compares the dynamic instruction count speedup over scalar code

on corresponding ISAs (RVV or AVX-512), of the hand-vectorized and compiler-

generated configurations at a hardware vector length of 8.

Streamcluster: The compiler can effectively auto-vectorize the critical func-

tion: dist which has a streaming regular access pattern and a reduction op-

eration. Figure 2.2a shows that the compiler auto-vectorized configurations

have an even lower instruction overhead (better speedup!) than the hand-vector

counterpart. The hand-vectorized configuration uses vector control instructions

within the loop for dynamic vector length scalability (discussed in detail later)

which increases the overall instruction overhead.

Blackscholes: It is embarrassingly parallel but the RISC-V auto-vectorized

versions (RVV-VLA and RVV-VLS) have no speedup over the scalar version.

The compiler is unable to vectorize math function calls rendering a scalar code

26

for the RVV-VLA configuration. In the RVV-VLS configuration, the compiler

serially unrolls math function calls to process them on scalar machine before

switching back to vector computation resulting in expensive register spilling

and high instruction overhead. However, the compiler can use GLIBC vector

math library for AVX-512 which results in a 9.3× speedup over the scalar ver-

sion.

Jacobi-2d,Pathfinder: All the auto-vectorized configurations vectorize the

applications to get comparable speedup to hand-vectorized version. However,

the auto-vector configurations fail to identify data reuse patterns leading to re-

dundant memory accesses.

Particlefilter,Swaptions: For these benchmarks, the compiler is unable to

auto-vectorize critical sections resulting in minimal speedup over scalar code.

Table 2.1(B) summarizes the areas of improvements needed to improve per-

formance of the compiler auto-vectorized code when compared to the hand-

vector version. We discuss these gaps in detail using the context of the evalua-

tion results.

2.5.2 Vector math libraries

For some benchmarks, we find that a significant impediment to compiler auto-

vectorization in RISC-V is the use of math function (libm) calls in otherwise

vectorizable code. An inner loop may be easily parallelizable but contain a call

to a scalar log10, for example, that prevents LLVM from vectorizing the entire

loop. Both Blackscholes and Swaptions have such function calls in the critical

27

sections of the code.

To measure the performance impact of this limitation, we construct special

versions of the two affected benchmarks that “factor out” the influence of these

math functions. In both the hand-vectorized and auto-vectorized versions, we

replace the problematic math functions with no-ops. The resulting comparison

approximates the remaining performance gap if the compiler could perfectly auto-

vectorize code with math functions.

Figure 2.2b shows the results all transformed benchmarks: in Blackscholes,

factoring out math functions closes the gap entirely, but auto-vectorization

for Swaptions is still limited by other factors (discussed ahead). The auto-

vectorized configurations after transforming Blackscholes, have over 11×

speedup compared to the 6.8× speedup for the hand-vector counterpart. This

margin is due to better fused-instruction selection and loop invariant optimiza-

tion by the compiler. However, since math lib calls take a major fraction of the

code execution, the hand-vectorized version might have glossed over these op-

timizations.

These advantages show that the compiler does a good job at instruction

selection and optimizations, for simple compute patterns. Moreover, auto-

vectorization can take advantage of the boring, fiddly optimizations and let

programmers focus on the bigger picture.

LLVM should support auto-vectorizing code with libm calls by replacing

them with calls to a vectorized math library for RISC-V.

28

2.5.3 Vector-scalar width mismatch

The RISC-V vector extension (RVV) and AVX ISA allows a flexible element

width in vector registers, in contrast to the fixed-width scalar registers defined

by the base RISC-V ISA. This flexibility can cause problems when code has in-

teractions between scalar and vector values. If an application uses 32-bit values

everywhere but is compiled for RV64, then the scalar values will be promoted

to 64-bit registers (using the i64 type in LLVM). The values in vector registers,

however, remain 32-bit values (e.g., using the <8 x i32> vector type in LLVM).

The result is that the compiler generates unnecessary instructions to convert

between different element widths and might use extra vector registers to accom-

modate widened elements. To avoid this pitfall, we fix the primary data type for

all benchmarks to use 64-bit values and compile for the RV64 base ISA. How-

ever, to make auto-vectorization more accessible, LLVM and other compilers

should evolve to elegantly handle element size mismatches.

LLVM should infer scalar width from vectorized data types.

2.5.4 Dynamic vector length scalability

When programming with RVV intrinsics, programmers can stripmine loops and

dynamically adjust the number of elements handled per iteration:

//dynamic vector length

int hwl = vsetvl(N);

for (int i = 0; i < N; i += hwl){

hwl = vsetvl(N-i);

29

...

}

This adjustment is especially useful in cases where the loop trip count is not

a multiple of the maximum hardware vector length. However, the LLVM

auto-vectorization only executes vector code in the maximum hardware vector-

width, shown using pseudo-code:

//maximum hardware vector length

int max_hwl = read_csr_vlen();

for (int i = 0; i < N; i += max_hwl){

if ((N-i)<max_hwl) break; //execute left-over as scalar code

...

}

This can lead to poor scalability, usually with larger vector units. Figure 2.3

shows poor scalability in Jacobi-2d for the compiler generated auto-vectorized

versions since the loop trip count is not perfectly divisible by vector length

(due to a convolution-style computation). We notice no apparent instruction

reduction for both VLA and VLS auto-vectorized versions on going from vector

length 16 to 32 since the scalar overhead of loop “tails” offsets the instruction

savings from the increased vector length.

LLVM allows predication based vectorizing of the loop tail using the flag: -

prefer-predicate-over-epilogue=predicate-else-scalar-epilogue but this is

orthogonal to dynamic vector length control in RVV and can cause unnecessary

register spilling in larger loops with conditional branches.

30

8 16 32 64
Vector length

108

109

Dy
na

m
ic

in
st

ru
ct

io
n

co
un

t

jacobi-2d_instr_scaling

Scalar
RiVEC
Auto-vector-VLA-T
Auto-vector-VLS-T

Figure 2.3: Dynamic instruction scaling across different hardware vector length
in Jacobi-2d plotted on logscale. The overhead of running scalar instructions
(due to non-scalability) increases at higher vector length for compiler generated
code.

LLVM should generate loops that embrace the scalable vector style: in-

stead of assuming a fixed vector length and using scalar instructions for

loop “tails,” it should generate code that uses vsetvl to dynamically ad-

just the length on every iteration.

2.5.5 Shuffle pattern detection

Both Pathfinder and Jacobi-2d have overlapping memory access patterns, which

is illustrated using a simplified example below:

31

for (int i = 1; i < N; i++) {

b[i] = a[i-1] + a[i] + a[i+1];

}

The hand-vectorized code uses RVV shuffle instructions: vslide1up for a[i-1]

and vslide1down for a[i+1] to shift the values in the vector register of a[i],

avoiding redundant memory accesses. Such an optimization entails two com-

ponents for the compiler:

• Analyzing overlapping memory access patterns to remove redundant

loads.

• Representing shuffle patterns in the IR and selecting optimal instructions

in the backend.

In general, selecting special-purpose vector shuffle instructions is hard for com-

pilers [112]. LLVM can analyze simple recurrence patterns in the absence

of aliasing but fails in more complicated cases like conditional branches (in

Pathfinder) and 2D array accesses (in Jacobi-2d). We apply transformations

from Table 2.2 to simplify these applications to the example discussed above

and assess LLVM performance. The manual transformations allows the com-

piler to recognize one (out of the two) first-order recurrence pattern between

a[i] and a[i-1].

LLVM uses a dedicated IR intrisic (llvm.experimental.vector.splice) for

representing this pattern for VLA configuration, unlike the more standard

shufflevector instruction used for VLS. These instructions are lowered to

RISC-V shuffle instructions: vslidedown and vslideup, in the backend.

Figure 2.4 shows the decrease in memory requests in the transformed auto-

32

jacobi-2d pathfinder
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e

dy
na

m
ic

ve
ct

or
 m

em
or

y
in

st
ru

ct
io

n
co

un
t

1.0 1.0

2.9

1.7

2.9

1.7

2.5

1.3

2.5

1.3

RiVEC
Auto-RVV-VLA
Auto-RVV-VLS
Auto-RVV-VLA-T
Auto-RVV-VLS-T

Figure 2.4: Vector memory requests relative to hand-vectorized baseline. The
transformation allows compiler to reduce redundant loads in both the auto-
vectorized configurations.

vector configurations for both benchmarks. Since the compiler is partially suc-

cessful in reducing redundant memory loads, the transformed auto-vector con-

figurations still produces 2.5× and 1.3× higher memory requests compared to

the hand-vectorized version for Jacobi-2d and Pathfinder respectively.

In some cases, the shuffling patterns across vector elements form the core

of critical loops. Particlefilter is one such case, where the compute pattern is

expressed using a sophisticated instruction vfirst, designed to select the first

nonzero vector element. Hence, the compiler fails to vectorize the critical sec-

tions of the benchmark leading to poor performance.

33

LLVM needs to improve shuffle pattern analysis for generic and backend

specific patterns and use generalizable mask representation for VLA con-

figuration.

2.5.6 Algorithm driven Loop Fusion

A lot of intrinsic-based vector programming comes down to customizing algo-

rithms to achieve better performance for a given configuration.

The hand-vector version of Canneal uses loop fusion, among other tech-

niques, to improve vectorization. A simplified code block from Canneal is

shown below:

for (int i = 0; i < fanin; ++i){

a = a + fanin_val[i];

}

for (int i = 0; i < fanout; ++i){

a = a + fanout_val[i];

}

Since the loops are restricted by graph fan-in and fan-out degrees, even at

large data simulations, the loop bounds can be smaller than the hardware vec-

tor length. In such cases, fusing the loops can provide efficient vectorization

opportunities to scale to larger hardware vector lengths. However, loop fusion

is not trivial and requires setting up combined arrays to facilitate it. We perform

this transformation, inspired from the hand-vectorized version, for the compiler

auto-vectorization configurations:

for (int i = 0; i< fanin+fanout; ++i){

34

a = a + all_val[i]; // has both fanin, fanout nodes

}

This algorithmic transformation allows auto-vectorized code to run vector in-

structions at the maximum supported hardware vector length and close the gap

with hand-vectorized version as shown in Figure 2.2b.

Future programming model for vectorization should be able to guide pro-

grammers towards transformations such as Loop Fusion.

2.5.7 Vectorizing specific loops

In general, LLVM’s auto-vectorization focuses on vectorizing the innermost

loop in each loop nest. In situations where interchanging loops is not trivial,

the compiler might fail to see vectorization opportunities or vectorize irrelevant

loops. This effect arises at various places in Swaptions. One such instance, after

interchanging loops and simplifying 2D accesses, looks like this:

for (int i = 0; i < N; ++i){

int sum = 0;

for(int j = 0; j < M; ++j){

sum += a[j][i];

}

b[i] = c[i] + sum;

}

In the benchmark: M = 3, so just vectorizing the inner loop is not very useful. In

addition, even if the inner loop were not vectorizable, the compiler would give

up and not look at broader vectorization opportunities that might be visible

35

to the programmer. The hand-vectorized version can vectorize the outer loop,

which is much more scalable due to the larger loop trip count (known to the

programmer) and results in simpler unit-strided vector memory accesses. This

strategy allows the hand-vector version to scale well with increasing hardware

vector length. The auto-vectorized versions fall short due to focusing on inner-

most loops by default.

LLVM auto-vectorizer should support outer-loop vectorization. However,

identifying scalable loops for vectorizing requires simultaneous loop in-

terchanging optimizations and cost analysis, which can be hard for com-

pilers and should be offloaded to programmers.

2.5.8 Adapt algorithms to the microarchitecture

In the previous code example, the variable N is used as a blocking parameter for

better caching in the serial version of the code. The hand-vector code changes

the algorithm to set the variable to the hardware vector length using vector in-

trinsics. This unique feature of vector-length agnostic ISAs like RVV allows the

algorithm to automatically adapt to different microarchitectures.

While high-level algorithmic changes are out of scope for a traditional C

compiler, they represent an opportunity for higher-level languages and DSLs

that compile to vector ISAs [89].

36

C++

LLVM IR

Backend
instruction
selection

Figure 2.5: Instruction selection procedure in LLVM vectorization for fixed
vector-length configuration of RVV. The LLVM IR represents the data movement
across vector registers using the shufflevector intrinsic using a fixed vector-
length mask array. This representation fails for length-agnostic designs.

Future work should explore programming models that make this kind of

algorithmic parameterization available to programmers without requir-

ing manual tuning of hardware intrinsics.

2.6 Solution proposal: Scalable compiler IR

In this section, we discuss a possible solution that can address some of the issues

pointed out in the previous sections.

The compiler IR is a target-independent respresentation to decouple com-

37

piler frontend optimizations from the backend device. Figure 2.5 shows the

LLVM IR representation for shufflevector intrinsic and its backend specific

lowering to ISA instructions. First, the vectorization pass identifies a first-order

recurrence pattern in the loop. The IR uses vector register indexes to represent

data shuffling. In the RISC-V backend, the offsets can be pattern matched to the

optimal instruction.

This procedure worked well with traditional fixed vector-length ISAs, but

does not extend directly to length-agnostic designs since vector-length is un-

known at compile time. Currently, LLVM [57] uses a dedicated IR intrisic—llvm

.experimental.vector.splice(inspired from the ARM SVE ISA) for length-

agnostic ISAs to represent this pattern. This breaks the decoupling between

the frontend and backend of the compiler. Every new instruction requires coor-

dinating 3 changes across 3 layers: changing the auto-vectorizer, changing the

IR and changing the backend. This is in contrast to the way compilers are sup-

posed to work: to add a new instruction you only modify the backend. We want

to get back to this place.

While LLVM uses dedicated intrinsics to represent the register shuffle pat-

terns, it uses a unified intrinsic—llvm.masked.gather and llvm.masked.scatter

for memory access patterns that are not contiguous accesses. However, the

offset pointer for gather/scatter intrinsics are represented using fixed-length

arrays for VLS ISAs, similar to shuffle masks. These arrays can be pattern-

matched to backend specific instructions such as “strided load” in VLS con-

figuration but breaks down for VLA designs.

To solve the representation issue, we propose designing the ScaleIR. We

make the following modifications in the compiler for a prototype design:

38

Shuffle mask

Arithmetic function

Figure 2.6: Represent shuffle masks using a function of vector-id and scalable
vector length in the IR.

• Modify the loop vectorization pass to represent shuffle and gather/scatter

masks using arithmetic functions of vector lane-id (llvm.experimental.

stepvector) and scalable vector length (llvm.vscale), as shown in Fig-

ure 2.6.

• In the RISC-V backend, traverse the IR Control Flow Graph (CFG) to com-

pose arithmetic functions to identify patterns for optimal instruction se-

lection.

We perform a preliminary evaluation of this prototype design for ScaleIR

on the TSVC benchmark loops. We found the following auto-vectorization im-

provements using ScaleIR:

• ScaleIR bridges the instruction selection gap discussed in Section 2.4 by

selecting strided loads in all relevant loops for the VLA configuration. This

is enabled by the IR modification that represents the strided access pattern

as a function of stride offset and loop iteration variable, and the backend

pass to detect and select the RVV specific instructions: vlse,vsse.

39

• We extend RVV backend passes to select optimal shuffle instructions such

as vslide1up,vslide1down for relevant patterns.

• ScaleIR is not limited to llvm.experimental.vector.splice intrinsic with

constant offset argument. This flexibility allows it to support shuffling

patterns with variable vector-length offsets. Hence, we are able to sup-

port product reductions using tree-based vector register reduction in a

dynamic loop (proposed in Table 2.1-A4).

Currently, the instruction selection for shuffle patterns is limited by the ones

supported in the loop vectorization pass. LLVM extends scalar optimizations

such as first-order loop recurrence, to specific vector shuffle instructions like

splice with a constant offset of 1. Ideally, LLVM should analyze a wide range

of register shuffle patterns (similar to main-memory optimizations such as coa-

lescing interleaved memory accesses [71]) and represent using a shufflevector

mask pattern. This general mask pattern opens opportunities for the backend

to select ISA specific instructions based on patterns expressed in the IR. ScaleIR

also enables a unified approach to represent VLS and VLA configurations by

taking a vector-length agnostic approach. In the future, ScaleIR could enable

the following directions of work:

• Decouple shuffle pattern analysis in the Loop Vectorization pass by rep-

resenting a general pattern in the IR and selecting specific instructions in

backend. Finding generic recurrences that are insensitive to vector lengths

can increase vectorization opportunities. This would also involve a differ-

ent approach for cost modelling since the backend decides the feasibility

of the shuffle instruction and rolls back the shuffle if not effective.

• Automatically generate backend passes to detect ISA specific patterns. We

40

believe there should be a DSL to generate these passes based on an arith-

metic function of the pattern. The DSL could also enable correctness ver-

ification of the passes, which can get complex due to graph traversal and

pattern matching.

This work would extend the shuffle pattern detection in loop vectorization (pro-

posed in Table 2.1-B4), in context of length-agnostic ISAs.

2.7 Conclusion

Next-generation vector ISAs portend a new era for mainstream parallel pro-

gramming models. Their popular uptake, however, requires moving beyond

manual intrinsic-based programming. The goal should be to let programmers

express high-level parallelism strategies while letting the compiler focus on

what compilers do well: selecting instructions, scheduling computations, and

removing redundancy. To this end, compiler designs should incorporate sug-

gestions outlined in this chapter to expand support for emerging ISAs and con-

sequently enable improved programmability and high-performance code gen-

eration.

41

CHAPTER 3

SOFTWARE-CONTROLLED HARDWARE PREFETCHING

3.1 Introduction

Data prefetching in modern datacenter workloads has an accuracy problem.

Per-core memory bandwidth is reaching a plateau [42, 67], but datacenter work-

loads’ bandwidth consumption is still rising about 10% each year [42]. In en-

vironments with such constrained bandwidth, prefetchers must act conserva-

tively: they must not waste bandwidth in exchange for marginal cache hit-rate

improvements. Unfortunately, hardware prefetchers such as Stride, Best Offset

Prefetcher (BOP) [62] and Signature Path Prefetcher (SPP) [48], have a funda-

mental tradeoff between higher bandwidth consumption and improved cache

hit rates (see Figure 1.1), as covering more misses invariably results in more

speculative and useless prefetch requests. While this tradeoff can be justified

in a bandwidth-rich environment, aggressive prefetchers are an increasingly

poor fit for datacenter workloads, and recent work [42] has even shown that

disabling hardware prefetchers altogether can sometimes improve datacenter

performance.

Two possibilities for more accurate, conservative prefetching include soft-

ware prefetching and throttled hardware prefetching. Software prefetching [17, 64,

66, 65, 58, 4, 43] achieves high accuracy by putting workloads in control of

exactly what to prefetch. However, its dependence on programmer or com-

piler guidance can make it difficult to apply universally, which entails guessing

where to insert a prefetch instruction to achieve an optimal “lead time” [54].

Software prefetching also incurs inherent instruction overheads.

42

Hardware throttling [107, 11] is a promising alternative: it can dynamically

detect situations where a hardware prefetcher is wasting bandwidth and sup-

press it. Inevitably, however, hardware throttling is reactive—it must observe

some bandwidth waste before it can correct it. Moreover, state-of-the-art hard-

ware throttling solutions [11] require careful workload-specific tuning, so con-

figurations that work on one set of workloads, such as SPEC, may not generalize

to the diversity of workloads in the datacenter. We find (in Section 3.2) that the

reactive and workload-sensitive nature of hardware throttling can cause prob-

lems in a datacenter setting, where instruction footprints are large and context

switches frequent.

This paper proposes to combine the strengths of software-driven and

hardware-driven approaches to improving prefetching accuracy. Like hardware

throttling, our goal is to start with an aggressive prefetcher and opportunis-

tically attenuate its bandwidth waste to achieve both high accuracy and high

coverage. Like software prefetching, we aim to adapt to workload-specific data

access patterns instead of requiring universal heuristics. Our approach uses

software directives to control the aggressiveness of hardware prefetching. The

result is a hardware–software collaboration: software is responsible for decid-

ing which code can benefit from prefetching, and hardware remains responsible

for predicting which data to prefetch and when. This division of labor exploits

the strengths of each domain: software can “program” the hardware prefetcher

based on workload requirements or system conditions, and hardware can ex-

ploit signals from dynamic program behavior to make specific prefetching de-

cisions. In other words, software ensures accuracy and hardware maximizes

coverage.

43

Specifically, we envision an expansion of the hardware–software interface to

control prefetching. Current hardware interfaces offer software only two op-

tions: (1) instructions to unconditionally prefetch specific data, or (2) disable

hardware prefetching entirely. In our proposal, software can mark code or data

to enable or suppress hardware prefetching in a particular context. By allocating

these markers more or less aggressively, workloads can navigate the trade-off

depicted in Figure 1.1 much more effectively.

Our implementation, which we call Programmable Prefetching (ProP), is

a profiling-based mechanism for generating software markers that suppress

prefetching when it likely to be inaccurate, but the same interface can also sup-

port similar hints from static analysis or programmer annotations. We show

how to generate these markers, how to cheaply communicate this information

from software to hardware without requiring ISA changes, and how the hard-

ware prefetcher can leverage these markers to filter prefetches.

Overall, we make the following contributions:

• We show that state-of-the-art prefetch filtering schemes do not work well

in datacenter environments. In particular, we show that bandwidth con-

straints, frequent context switches, and large workload diversity makes

hardware throttling ineffective in datacenters.

• We propose a new hardware-software interface to modulate prefetchers

effectively, and we show that our proposed division of responsibilities be-

tween hardware and software can provide superior tradeoffs than hard-

ware or software prefetching alone.

• We design, implement, and evaluate ProP, a profile-guided tool that asso-

ciates prefetch directives for PCs.

44

• We evaluate ProP on multiple state-of-the-art prefetchers and across data-

center workloads and SPEC 2017 INT workloads using the gem5 simula-

tor. On average, ProP increases performance by 3% over the state-of-the-

art underlying prefetcher, SPP, and 1.8% over a hardware-based prefetch

filtering technique, PPF. With frequent context switches, the benefit of

ProP increases performance to 4% over the hardware baselines.

3.2 Motivation

Prefetchers improve performance by predicting future memory accesses and

fetching them ahead of time in the cache. There are two prefetcher metrics that

measure how good the prefetcher prediction is: accuracy and coverage. Prefetcher

accuracy is the fraction of prefetches that were useful and subsequently used by

a demand access. Prefetcher coverage is the reduction in demand misses due to

the prefetching.

In bandwidth-rich environments, prefetcher coverage is the primary indica-

tor of its performance benefit: the higher the coverage, the better the prefetcher

performs. However, in bandwidth-constrained environment—common in

datacenter environments—the performance tradeoffs are more complex. In

bandwidth-constrained environments, while high coverage can still help hide

memory latency, low accuracy can degrade performance by worsening band-

width contention. Figure 3.1 confirms this as we see that the performance

improvements for two state-of-the-art prefetchers, Signature Path Prefetcher

(SPP) [48] and Best Offset Prefetcher (BOP) [62], get narrower as bandwidth

becomes scarce.

45

4 8 16
Memory bandwdith (GB/s)

1.02

1.04

1.06

1.08

1.10

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

BOP
SPP

(a) Merced workload

4 8 16
Memory bandwdith (GB/s)

1.0

1.1

1.2

1.3

1.4

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

BOP
SPP

(b) 505.mcf_r

Figure 3.1: The benefit of hardware prefetchers shrink with limited bandwidth
on both Merced (a large datacenter workload) and mcf (SPEC workload).

There are two prevailing strategies for tackling the performance loss in

bandwidth-constrained settings. The first strategy is reactive [107, 78]: it dials

the prefetcher back when bandwidth contention is observed. The second strat-

egy is predictive [49, 11]: it learns at a fine-granularity which prefetch requests

to drop.

3.2.1 Reactive Throttling

Reactive solutions observe bandwidth waste and throttle the prefetcher using

run-time information [107, 78]. For example, for SPP [48], such throttling can

be achieved by changing the confidence threshold to modulate prefetcher ag-

gressiveness, for BOP [62], it can be achieved by changing the offset score

thresholds used to calculate the best offset, and for IP-stride, aggressiveness

can be modulated by changing the degree and look ahead distance of the

prefetcher. Figure 3.2 shows that for all three prefetchers, throttling inevitably

has a sharp accuracy–coverage tradeoff, where a lot of coverage is sacrificed

46

0 10 20 30 40 50
Coverage

0

20

40

60

80

100

Ac
cu

ra
cy

IP-Stride
BOP
SPP

Figure 3.2: Accuracy vs coverage tradeoff for different configurations of IP-
stride, Best Offset (BOP) and Signature Path (SPP) prefetchers, on Merced and
Bravo datacenter workloads.

to get marginally better accuracy. This is because throttling is very coarse-

grained, where prefetching is suppressed uniformly, meaning that “productive”

prefetches are supressed just as much as “unproductive” ones, without discrim-

inating between them.

3.2.2 Predictive Throttling

Predictive solutions [49, 11] learn to drop prefetch requests more selectively in-

stead of throttling all prefetch requests. For example, the perceptron prefetch

filter (PPF) [11] uses multiple program features and a perceptron learning algo-

rithm to identify prefetch requests that should be dropped. Unfortunately, these

solutions are not effective in datacenter environments for several reasons:

47

Latency Sensitive
0K

50K

100K

150K

200K

250K

In
st

ru
ct

io
ns

 b
et

we
en

 c
on

te
xt

 sw
itc

he
s

(a) Number of instructions between
context switches, profiled across
latency sensitive workloads in

datacenter.

250K 500K 1M 5M 30M
Instruction window simulated

0

5

10

15

20

25

30

Pr
ef

et
ch

es
 fi

lte
re

d
(%

)

Bad prefetches
Good prefetches

(b) Effectiveness of hardware-based prefetch
filtering for different instruction window

intervals (in log scale), for the Merced workload.

Figure 3.3: Context switches are frequent in datacenter workloads, making it
difficult for online throttling schemes to warm up adequately.

Frequent context switches Learning prefetcher effectiveness dynamically at

runtime requires time to learn and warmup that is difficult in datacenter en-

vironments, where applications are highly-multithreaded and incur frequent

context switches (Figure 3.3a). Figure 3.3b shows PPF’s ability to filter bad

prefetches issued from the underlying prefetcher - SPP, is diminished at smaller

instruction windows.

Workload diversity Filtering techniques like PPF (and often the underlying

prefetchers like SPP) have a wide range of parameters that require workload-

specific tuning for the prefetcher to work effectively. A typical datacenter runs

thousands of workloads, which are constantly evolving. Hard-coding hardware

prefetcher values at design time based on a few workloads is unlikely to yield

effective results in the long life of a server platform.

48

0x
63

6c
46

4

0x
63

6c
4e

4

0x
63

6c
4f

0

0x
63

6c
5f

4

0x
63

6c
8d

4

0x
63

6c
8f

8

PC

0

100000

200000

300000

400000
Pr

ef
et

ch
es

 is
su

ed

Useful
Not useful

Figure 3.4: Prefetching accuracies with BOP for each PC in a code region.

Large instruction footprint Finally, tracking features such as program coun-

ters and page addresses within limited hardware budgets is infeasible for dat-

acenter workloads because they have large instruction and data footprints. For

example, our evaluated datacenter workloads have more than 4× the instruction

footprint of perlbench—the largest among SPEC workloads, and this footprint is

constantly growing [46]. Using hardware resources to track prefetching behav-

ior at a fine granularity can quickly require ∼100s of KBs of hardware resources

for tracking.

3.3 Profiling Insights

BOP is a region prefetcher based on the Sandbox prefetcher [88], which learns

a prefetch offset from all memory accesses in a training window. Since it does

49

not rely on tracking individual load/store streams, it can be cost-effective for

large PC-footprint workloads and finds inter-stream prefetching opportunties

as well. However, once the offset is determined, prefetches are issued for all

memory accesses. This can lead to large traffic overheads when non-streaming

accesses are interleaved in the region, which are not prefetch friendly. Figure 3.4

shows the difference in prefetch accuracies issued by BOP, visualized for each

PC in a selected region of high prefetching for a datacenter workload. Unfortu-

nately, even though some PCs are almost always inaccurate for prefetching, they

get issued by the prefetcher since the entire region was adjudged as prefetch

friendly.

We simulated several threads across datacenter workloads and observed

code and data patterns that determine prefetching behavior. In this section,

we discuss observations based on Merced, a large Warehouse Scale Computer

(WSC) application, but these insights apply to other workloads as well.

3.3.1 Program counter maps to distinct prefetching behavior

We simulated 40 threads from Merced, and measured the prefetching accuracy

for each PC on which the underlying prefetcher - SPP, issued a prefetch. Fig-

ure 3.5 categorizes each PC into 3 prefetch accuracy buckets. The average

prefetcher accuracy across our simulation is 48%. We observe that a signifi-

cant portion of those prefetches(∼ 40%) are issued on memory instructions that

lead to poor accuracy(< 30%). Since we aggregate prefetching statistics across

different thread executions, this is evident that prefetching behavior for these

PCs is independent of the input data across different thread contexts.

50

0-3
0%

30
-70

%

70
-10

0%

Accuracy Categories

0

5

10

15

20

25

30

35

40

Pr
ef

et
ch

 fr
eq

ue
nc

y
(%

)

0-1
0%

10
-20

%
20

-30
%
30

-40
%
40

-50
%
50

-60
%
60

-70
%
70

-80
%
80

-90
%

90
-10

0%

Accuracy Categories

0

5

10

15

20

25

30

Pr
ef

et
ch

 fr
eq

ue
nc

y
(%

)

Figure 3.5: PC-based SPP prefetcher accuracy histogram, for different accuracy
bin sizes. A significant portion of prefetching is done for PCs that are < 30%
accurate. PCs themselves, can be a good indicator for prefetching behavior since
frequencies of < 10% and > 90% bins are highest.

0-3
0%

30
-70

%

70
-10

0%

Accuracy Categories

0

10

20

30

40

Pr
ef

et
ch

 fr
eq

ue
nc

y
(%

)

0-1
0%

10
-20

%
20

-30
%
30

-40
%
40

-50
%
50

-60
%
60

-70
%
70

-80
%
80

-90
%

90
-10

0%

Accuracy Categories

0

5

10

15

20

25

Pr
ef

et
ch

 fr
eq

ue
nc

y
(%

)

Figure 3.6: PC-based BOP prefetcher accuracy histogram, for different accuracy
bin sizes.

Figure 3.6 shows that this PC-based behavior is similar across other prefetch-

ers such as BOP, which has similar fractions of PCs in each accuracy bucket,

further signaling the need of code-level features to disambiguate prefetching

behavior.

To understand the distribution of these PCs. we look at aggregated prefetch-

ing behavior for higher level libraries in Merced’s trace execution, shown in Fig-

51

Figure 3.7: Aggregated SPP prefetcher accuracies for various libraries called
during the Merced trace execution. foo is an anonymized library name.

M
al

lo
cN

ew

M
al

lo
cD

el
et

e

M
al

lo
cF

re
e0

20000

40000

60000

80000

100000

Pr
ef

et
ch

es
 is

su
ed

Useful
Not useful

(a) TCMalloc functions

Pa
rs

eL
oo

p

Al
lo

ca
te

Al
ig

n

M
pM

ap

Fa
st

M
tR

1

Fa
st

M
tS

1

M
in

iPa
rs

e

Gr
ow

Th
re

ad
Sa

fe

W
rit

eM
es

sa
ge

In
se

rt

Fa
st

V3
2P

10

2500

5000

7500

10000

12500

15000

17500

20000

Pr
ef

et
ch

es
 is

su
ed

Useful
Not useful

(b) Protobuf functions

Figure 3.8: Function-level breakdown of prefetching accuracies

52

ure 3.7. A few libraries such as Zippy, which is a compression/decompression

library, have a high prefetch accuracy since the accesses are sequentially long

stream with strided accesses.

On the other hand, TCMalloc library has a poor prefetching accuracy of

∼17%. Figure 3.8a shows the breakdown of function accuracies within TCMal-

loc. The MallocNew function allocates a memory region from a list of available

locations:

void* Allocate(size_t size_class) {

return freelist_.Pop(size_class);

}

Due to memory fragmentation and dynamic memory allocation/dealloca-

tion, these locations in the freelist_ are stack like, and it’s direction change is

random, making it hard to prefetch.

We also looked at finer-granularity of function within libraries such as pro-

tobufs, where the prefetch accuracy is not too high or low. Figure 3.8b shows

that the most called function in protobufs is ParseLoop, which iterates over a

given proto structure. Since different proto structures will have different mem-

ory layouts, this function’s prefetching behavior can vary depending on the call

context or data layout, which results in a 50-60% accuracy on average.

53

3.3.2 Code context and data features can enhance prefetching

understanding

Figure 3.5 and 3.6 show that ∼20-25% of prefetching behavior in Merced is not

distinguishable by PC since the prefetch accuracy is between 30-70%. We look

at additional features which can help our understanding of their memory access

patterns.

Call context

As discussed in the previous section, ParseLoop function in protobuf, is called

on different proto structures. These proto structures are statically generated

and typically have nested repeated structures that can determine the memory

access pattern. We collected callstack data for each PC consisting of a tree of

function calls, to differentiate such cases, where two different proto structures

(with different call stacks) can call the same function. For instance, for the high-

est prefetch issuing instruction within ParseLoop, 30% of the callstacks had a

high prefetch accuracy (> 90%) and 10% had an accuracy < 10%. The highly ac-

curate call stacks come from Stream or Batch based protos, which are sequential

strided patterns.

The datacenter workload traces have PGO and cross-module thinLTO opti-

mizations that enable deep callsite inlining behavior [6]. This inlining embeds

partial call context data in the instruction pointer itself. However, as discussed

above, additional call context information can further differentiate prefetching

behavior.

54

No f
ilte

r PC Pag
e

PC
+CS

PC
+Pag

e

PC
+CS+

Pag
e

0

20

40

60

80

Pr
ef

et
ch

 a
cc

ur
ac

y(
%

)

Figure 3.9: Expected prefetch accuracy if low accuracy (< 30%) features are fil-
tered out. “No filter” is the baseline prefetcher accuracy. PC, Page and Call
stacks (CS) are features that can be used independently or hierarchically to im-
prove overall prefetch accuracy.

Page

Sometimes, the prefetching behavior of an instruction can be influenced by the

object being accessed. For instance, the same proto structure can have different

object sizes causing different prefetching behavior for the same PC/Call context.

We tracked prefetching accuracy of individual physical pages to demonstrate

pages as a feature.

We compare these features in Figure 3.9. We simulated and measured

prefetching behavior across different features and predicted the accuracy im-

provement if we filtered the features that have prefetch accuracy <30%. Clearly,

filtering based on PC provides a significant accuracy improvement opportunity

55

to begin with, so we focus on evaluating it in the paper.

3.4 Programmable Prefetching

This section details a concrete hardware–software system design for profile-

driven programmable prefetching. As shown in Figure 3.10, our solution com-

prises of (1) a profiling analysis (Section 3.4.1) to find instructions that will likely

experience wasteful prefetching, (2) binary instrumentation to instruct the hard-

ware to suppress prefetching (Section 3.4.2), and microarchitectural support to

act on the software-provided directives (Section 3.4.3).

3.4.1 Profiling Analysis

Our profiling phase analyzes workloads’ memory access patterns to identify

code locations where prefetching is particularly wasteful. In particular, in our

profiler, we model a simplified memory hierarchy with a simple aggressive

prefetcher to approximate the coverage and accuracy of prefetching on different

code segments of a given workload.

Specifically, we analyze DynamoRio memory traces [14] consisting of all

memory accesses for an execution window, including instruction fetches and

load/store instructions. (This paper focuses on data prefetching; we defer in-

struction prefetching to future work.) Each access in the trace consists of a PC

and a memory address. We then analyze the trace to get a prefetch score per

instructions, and add a lightweight uarch model to improve the fidelity of the

prefetch scores.

56

Binary

Core

L2 Cache Hint-based
filtering Prefetcher

Analysis model

Hardware

Profile collection

Hint insertion

Software

ld {hint,vaddr}

paddr
paddr

paddr + X

TLB
{hint,vaddr}

hint

Figure 3.10: An overview of the Programmable Prefetching (ProP) system.

Prefetch scoring models

We estimate prefetch scores for each instruction, where an instructions is iden-

tified by a program counter (PC). Prefetch scores estimate the probability of

prefetching a useful address (in the range [0, 1]) upon observing a memory ac-

cess from a given instruction PC.

The prefetch coverage for an instruction is highly dependent on the under-

lying prefetching algorithms, but we expect that the scoring can be learnt more

easily with an abstract prefetching model. We evaluate three different scoring

techniques that model the high-level characteristics of different styles of stride

prefetching, and choose a technique that is versatile and reasonably predicts the

57

score for multiple state-of-the-art hardware prefetchers:

• Simple stride model: For each memory access, we calculate the offset from

the closest memory access among the most recent N requests and map it

with the corresponding PC for the instruction. This results in a histogram

of offsets for each PC. The prefetch score for each PC is:

Score1 =
Frequency of the most common offset

Total number offset observations

This score estimate is high for instructions that access regular strides with

the same offset and low for random accesses. However, it also penal-

izes access patterns that oscillate between different offsets. This penalty

is appropriate to model prefetchers that actually behave poorly for such

an access pattern, like BOP which finds a single offset for multiple access

streams. On the other hand, it is a poor approximation for prefetchers that

can modulate their offsets quickly such as IP-stride prefetcher. In addition,

it only considers single instruction streams for prefetching, which is very

different from region-based prefetchers such as BOP or SPP.

• Stream length model: For each PC, we maintain a list of recent addresses ob-

served. For each memory access, we find the smallest stride offset among

the recent address list for each PC. We increment the stream length at each

successive memory access with the same offset until the offset changes.

Each PC has a histogram of stream lengths, which can go up to a maxi-

mum of 32. The score is defined as:

Score2 =

∑
frequencyi × stream lengthi∑

frequencyi

×
1

32

Instead of tracking individual offsets, this model focuses on stream length

as an estimate of prefetch accuracy. In case of a short stream, due to

58

prefetcher warmup time and the length of the stream itself, the accuracy

of the prefetcher is low, which is emulated by this model. However, this

model also considers individual PC-streams and misses prefetching op-

portunities across streams.

• Modeling an aggressive region prefetcher: Whereas the previous two ap-

proaches focus on identifying per-PC streams, region prefetchers do not

work this way: they seek offsets that fit all accesses within a page or code

region. One example of a region prefetcher is the Best Offset Prefetcher

(BOP) [62], which finds a common offset for the last N accesses (typically

64–256). This approach of finding a global offset generalizes well in iden-

tifying strided streams of accesses, without tracking individual delta pat-

terns that could be biased towards a specific hardware prefetcher. How-

ever,in the case of interleaved positive and negative strides in a region,

a global offset can only prefetch in one direction. We model a dual offset

BOP-like region prefetcher that tracks a positive and negative best offset

for each region, to avoid biasing the model in one direction. In this ap-

proach, we use this prefetcher model to generate prefetch candidates and

associate a prefetch score with each PC based on future demand accesses

using that candidate. To this end, we maintain two sets of prefetched ad-

dresses for each directional offset, and use it to track useful and unused

prefetches (prefetched blocks that are evicted without being accessed by a

demand request) for each PC. Finally, we get two prefetch accuracy met-

rics for a PC, and the model score is the maximum of the two:

Score3 = max(
Useful1

Unused1
,

Useful2

Unused2
)

We use the dual-offset aggressive prefetcher as the “analysis model” in Fig-

59

No u
arc

h

L1D
 ca

che

Tra
nsf

er
lea

rni
ng

Tim
elin

ess
0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
isc

at
eg

or
ize

d
PC

s (
%

)

Figure 3.11: Fraction of miscategorized PC (%) based on total prefetches issued,
decrease with additional level of microarchitectural modeling. The ground truth
prefetch accuracy data for PCs is from gem5 simulation of Merced.

ure 3.10, to determine the level of prefetch filtering in hardware. In this work,

we use a score threshold of 0.3, below which all accesses by the PC is filtered

from the hardware prefetcher, thereby preventing any prefetching on it.

Modeling microarchitectural details

To ensure prefetch scores are accurate, our profiling analysis incorporates sim-

ple microarchitectural details along with the prefetch score model. For example,

modeling cache filtering effects and prefetch timeliness helps better approxi-

mate the behavior of a real prefetcher without requiring the expense of a de-

tailed simulator. Figure 3.11 shows the effect of modeling these microarchitec-

tural parameters on miscategorized PCs, using Score3. We define a miscatego-

60

rized PC as follows - A) The prefetch score from our profiling model is lower

than our model threshold—30%, which would filter this PC, but the simulated

hardware prefetch accuracy is above 70%, or B) prefetch score is above 30% (no

prefetch filtering by ProP) but the hardware accuracy is below 30%. Each PC

is weighted by the amount of prefetches issued by the hardware prefetcher, to

get the final fraction(%) of miscategorized PCs. Implementing all the 3 model-

ing parameters reduces the miscategorization from 15.3% to 6%, in the case of

Merced. We discuss the modeling techniques in detail below:

• Cache modeling: Since aggressive prefetchers are usually placed at the L2

or SLC, they see a filtered stream of memory accesses. Filtering requests

at the L1 level absorbs fine-grained instruction reordering within a cache

line, and filters different instructions accessing the same cache line (tem-

poral locality). We model a simple direct-mapped L1D-sized cache to fil-

ter accesses and run the prefetch score model on accesses that miss in this

cache.

• Transfer learning for filtered instructions: Since the prefetch model only

scores unique cacheline based instructions (that filter through L1D), it can

ignore instructions that are always ordered after the unique instruction ac-

cessing the same address. However modern processors have out-of-order

cores which can reorder instructions. For instructions that are always fil-

tered at L1D in the profiling stage, we maintain a frequency map of in-

structions that access the same cacheline first. At the end of profiling, we

use the prefetch score of the top instruction in the map, as the score of the

filtered instruction, since both instructions access the same cacheline and

have similar memory access pattern.

• Timeliness modeling: In a real system, prefetches are only useful when they

61

Alas
ka

Ariz
on

a
Brav

o
Cha

rlie
Fox

tro
t

Merc
ed

Tan
go

Geo
Mea

n
0

2

4

6

8

10

12

M
isc

at
eg

or
ize

d
PC

s (
%

)

BOP
SPP

Figure 3.12: Fraction of miscategorized PC (%) by the profiling model for all
datacenter workloads, for different underlying hardware prefetchers. The mis-
categorization error is small in all workloads, and generalizes well to both hard-
ware prefetchers

are issued early enough to hide the latency for a subsequent demand ac-

cess. For example, BOP attempts to ensure its prefetches are timely by

using cache-fill time notifications to seek offsets that are large enough to

account for the round-trip memory access latency. Large offsets come with

a tradeoff of reduced coverage and accuracy, especially for short streams.

However, large offsets work well for the profiling model, since it helps pe-

nalize short streams with poor prefetch accuracy scores. We model a fixed

delay, of 3 memory accesses (chosen empirically) between a prefetch issue

and cache fill.

62

Versatility of profiling analysis for different hardware prefetchers

Fig 3.12 shows the ”error” of the profiling model, represented by miscatego-

rized PCs(%), for different hardware prefetchers (BOP and SPP), across data-

center workloads. On average, the predicted scores of the model have an error

of 2.5% for BOP and 3.1% for SPP, which is low for both prefetchers. Since the

model is not biased towards a single prefetcher, there is oscillation in the error

gap between both prefetchers on different workloads. Arizona has interleaved

accesses of positive and negative strides, but due to BOP’s limitation of a single

global offset, it cannot prefetch the negative streams in this case. The profil-

ing model can detect both streams and predicts high prefetch scores for them,

causing an error of 6.5% for BOP. SPP has a low error of 1.8% because it detects

offsets on a page granularity and is able to detect the two streams.

In case of Charlie, there are a few streams which have a stride access with

alternating delta patterns of 6 and 7, which can be identified by SPP. However,

BOP uses a global offset based off a list of limited offset candidates which by

default, only has factors of 2,3 and 5. Even with 7 as an offset candidate, BOP

is unable to find a common offset that works well for all streams in the region.

So BOP is unable to prefetch accurately for this complex delta pattern. Hence in

this case, our BOP-like region model, has a lower error for BOP than SPP.

Despite these inaccuracies, we find that our model is sufficiently accurate,

simple and generalizable across prefetchers that it can provide hints that are

useful in majority of the cases.

63

3.4.2 Communicating Prefetch Hints to Hardware

Our system needs a way to mark certain accesses (PC addresses) as prefetch-

friendly or prefetch-unfriendly. There are two ways to do this a) an ISA exten-

sion to introduce new instructions or b) mask unused bit in the address issued

by the target PC address.

In our design, we assume no changes to the ISA and use unused bit in the

data address to convey this hint because prefetchers that are higher in the mem-

ory hierarchy (closer to main memory) never see the PC of the instruction that

triggered a given access. Specifically, our scheme reuses the unused bits in the

data address [48-63] to represent prefetch hints. For prefetch filtering, we only

need 1 bit to indicate to the hardware prefetcher whether to enable or disable

the hardware prefetcher for each access.

This section describes how a software mechanism can be used to instrument

the binary to set the relevant address bit to convey the prefetching hint to hard-

ware and how the hardware handles these hints.

Software instrumentation The profiler identifies the PCs for the accesses that

need the hint. One approach may be to use a binary rewriting tool to instrument

prefetch-unfriendly accesses to set the hint bit. We can extract the target instruc-

tion’s operands and insert a platform-specific instruction to mask the upper bits

and set the hint bit. The exact instrumentation depends on the addressing mode:

in a register-direct addressing mode, we can directly mask the address value in

the register; for other addressing modes, we first need to materialize the effec-

tive address and then apply the mask. An ISA extension alternative would have

64

100 101 102 103 104

Number of unique PCs (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

et
ch

 b
eh

av
io

r

Bravo
Charlie
Foxtrot
Merced
Arizona
Alaska
Tango

Figure 3.13: Cumulative density function (CDF) of number of unique PCs (in
log scale) needed to represent prefetch behavior of datacenter workloads.

to define variants of all instructions which issue memory accesses. This may be

undesirable for CISC ISAs.

The following code listing demonstrates an example of inserting a masking

instruction to instrument the hint in the 48th bit location of the virtual address

(of a prefetch-unfriendly access):

// load the addr in register

ldr r0, addr

// NEW INSTR: mask the hint inside the addr

orr r0, r0, (1 << 48)

// send the load request with hint to memory

ldr r1, [r0]

Figure 3.10 shows the resulting masked representation of the virtual address as

{hint,vaddr}.

65

To quantify how many instructions are affected, Figure 3.13 shows the num-

ber of unique PCs that represent all prefetch behavior (total prefetches issued

by all PCs) of the workload. We instrument profile hints for a fraction of these

PCs, which are below a prefetch accuracy threshold. For most workloads ex-

cept Merced and Charlie, ∼10 PCs can represent 80% of the prefetching behav-

ior. For the larger workloads, ∼5K PCs represents 80% of the behavior. This is a

much smaller fraction of the entire unique instruction footprint of the workload,

which for Merced for instance, is >1M instructions.

While we do not consider it in this work, it would be possible to eliminate

the overhead of these instrumentation instructions by extending the ISA. This

extension would add hint bits to memory access instructions, much like NTA

hints. Like NTA, the hints would get plumbed into the memory subsystem to

provide prefetching directives.

Address translation Both Intel’s Linear Address Masking (LAM) [39] and

Arm’s Top Byte Ignore (TBI) [1], currently reserve a few bits that are unused

in the address space. This allows application software to store metadata in the

higher order bits. This hint is embedded in the virtual memory address and

is ignored during the virtual to physical address translation. In our methodol-

ogy, as shown in Figure 3.10, we propose extracting the hint bit from the virtual

address, and retaining it with the physical address output of the TLB, in the

request packet. The hint is retained in the request packet until it reaches the

prefetch filtering block.

66

Parameter Value
CPU core 1-4 cores, OoO, 3GHz, 320 entry ROB, 90 LSQ
Private L1 Split I/D, 64KB, 4-way, 2 cycle, PLRU
Private L2 1MB, 8-way, 9 cycle, PLRU, inclusive
Shared L3 1MB/core, 16-way, 29-33 cycle, PLRU, partially inclusive
Main Memory Load-to-use latency: 95ns, 4 GB/s (single-core), 16GB/s (4-

core), 32GB/s (8-core)

Table 3.1: Simulation configuration

3.4.3 Prefetch Filtering in Hardware

Figure 3.10 shows the “hint-based filtering” block, which is placed between the

L2 cache and the underlying prefetcher at that level. The block filters the ad-

dresses based on the hint bit associated with it. Hence, the prefetcher only

observes a filtered stream of prefetch-friendly accesses. In addition to reduc-

ing prefetch traffic, such proactive filtering at the input of the prefetcher also

improves the offset detection algorithm due to an improved stream visibility.

As evident from Figure 3.10, the hardware changes are minimal and only

require minimal logic to interpret the hint bit.

3.5 Methodology

3.5.1 Performance Model

We use gem5 simulator [12], an event-driven simulation model. Table 3.1 sum-

marizes the CPU and memory parameters of the simulated model for both

single-core and multi-core simulations. We use memory bandwidth of 4GB/s

for our single-core experiments based on recent trends for per-core memory

67

Name Thread count, average size Simulation window
Alaska 5 threads, 1B [400M, 800M]
Arizona 5 threads, 7B [400M, 800M]
Bravo 4 threads, 1.1B [400M, 800M]
Charlie 5 threads, 2.2B [400M, 800M]
Foxtrot 5 threads, 3.4B [400M, 800M]
Merced 5 threads, 850M [400M, 800M]
Tango 3 threads, 1.3B [400M, 800M]
SPEC 2017 10 benchmarks, 300B 4668 simpoints, 10M each

Table 3.2: Workload simulation details

bandwidth in server systems [104, 42]. We scale out system bandwidth to

16GB/s for 4-core, and 32GB/s for 8-core evaluation.

3.5.2 Workloads

We simulate 7 datacenter workloads and 10 SPEC2017 INT benchmarks for our

evaluation using their respective DynamoRIO traces. The workloads are listed

in Table 3.2. The datacenter workloads have been provided codenames to pre-

serve anonymity.

The datacenter workloads have profile-guided and cross-module thinLTO

optimizations that enable deep callsite inlining behavior. The SPEC workloads

have the standard compiler optimizations as recommended on the benchmark

website.

Single-core simulation: Each datacenter workload has multiple threads,

and we simulate the top 5 threads based on instruction count, such that each

thread has at least 800 million instructions. For each thread, we fast-forward

the first 300M instructions, use the next 100 million instructions to warmup the

68

cache, and we perform a detailed simulation of 400M instructions in the range

(400M,800M).

For SPEC workloads, we simulate 4668 10M-interval Simpoints [79] that rep-

resent the entire trace of the benchmark, effectively simulating ∼4.6B instruc-

tions for each SPEC workload. Before each simpoint execution, we warmup the

cache by running 30M instructions prior to the start of the simulation.

Multi-core simulation: For multi-core, we simulate 4-core and 8-core con-

figurations. We generate 100 random mixes of datacenter workload threads.

We fast-forward the first 300M instructions, warmup for 100M instructions, and

perform a detailed simulation for the next 100M instructions. For each simula-

tion, once a workload finishes execution on a core, we stop accounting it’s stats

but keep it running until all other workloads have finished execution.

We report performance as a weighted speedup over no prefetching baseline.

First, for each prefetcher configuration of a workload in the multi-core mix, we

calculate IPC of the workload when run together with all other workloads -

IPCtogether. In addition, we run the same workload without prefetching, alone,

on a 4-core system, to calculate IPCalone. We calculate the weighted IPC of a

workload mix as the sum of individually normalized IPC of each workload i:
∑

i

(IPCtogether/IPCalone). Next, we similarly calculate weighted IPC for the workload

mix without prefetcher as a baseline. The reported weighted speedup of the

workload is obtained by normalizing the weighted IPC with prefetcher enabled,

to the weighted IPC without prefetching i.e., the baseline.

For the 8-core configuration, we use the same methodology as 4-core, but

reduce the warmup to 50M instructions and perform detailed simulation for

69

the next 50M instructions. This reduction is done to finish the experiments in a

reasonable time frame (∼ 2 days).

Short-instruction window simulation: As shown in Figure 3.3a, context

switches are frequent in datacenters and can occur every 250K-500K instruc-

tions. To evaluate the impact of frequent context switches, we simulate a range

of instruction window lengths such as 250K, 500K, 1M, 10M and 50M, and

warmup by 50M instructions before to decouple prefetcher performance from

cache warmup. For a single window length such as 250K instructions, we sim-

ulate all such windows in the range [400M, 450M] (200 windows in this case),

for all datacenter workloads. For each workload, we average IPC across the N

windows for all threads of the workload, to get the final IPC performance.

3.5.3 Profiling methodology

We use the ”aggressive region prefetcher” model for profiling traces to generate

hints. By default, we choose a threshold score of 30% accuracy to determine

which load instructions should be filtered. For datacenter traces, we profile the

first 300M instructions for all the threads and pool the data across threads of a

given workload, to generate one set of hints per workload. For, SPEC 2017 INT

benchmarks we profile 1B instructions in the range of (1B,2B) for each workload.

Our profiling methodology ensures that the training region for each workload

trace (part of the trace used to generate the profile) does not overlap with the

test region (part of the trace that is simulated for performance measurements),

or has very low probability of overlap in the case of SPEC. Note that we do

not evaluate cross-trace generalization as it is common for datacenters to have

70

continuous profiling for key web services [92, 82, 108].

3.5.4 Baselines

We use 2 prefetchers and 2 hardware throttling techniques for data prefetch-

ing at L2 as our baselines. For baseline prefetchers, we choose two state-of-

the-art prefetcher models: Best Offset Prefetcher (BOP) [62] and Signature Path

Prefetcher (SPP) [48]. BOP was the winner of 2nd Data Prefetching Champi-

onship. BOP uses minimal hardware resources and issues prefetches with a

global offset, while also taking into account prefetch timeliness. SPP adds sup-

port to track individual delta patterns and has been shown to perform better

than BOP on SPEC 2006 and 2017 benchmark [48, 11]. Each prefetcher’s pa-

rameters are tuned to maximize their performance in the baseline system. For

SPP, this corresponds to a 25% confidence threshold, and for PPF-SPP, this cor-

responds to a 0% threshold.

We use Feedback Direceted Prefetching (FDP) [107] as a coarse-grained

throttling mechanism, and Perceptron-based Prefetch Filtering (PPF) for fine-

grained filtering. FDP was originally designed to work with a stream

prefetcher [44] with variable prefetching degree. Since BOP already operates

at an aggressive offset it only uses a degree of 1. We model FDP to reduce

the degree of BOP from 1 to 0, effectively stopping prefetching in regions with

poor prefetcher accuracy. We use the default configurations for PPF, which was

proposed to filter prefetches issued by an aggressive version of SPP (with no

confidence-based throttling) based on a perceptron model.

We demonstrate ProP’s ability to filter prefetches for both prefetchers: BOP

71

Al
as

ka

Ar
izo

na

Br
av

o

Ch
ar

lie

Fo
xt

ro
t

M
er

ce
d

Ta
ng

o

Ge
oM

ea
n

15

10

5

0

5

10

15

20

25

IP
C

im
pr

ov
em

en
t (

%
) o

ve
r n

o
pr

ef
et

ch
in

g

BOP
FDP-BOP
ProP-BOP

SPP
PPF-SPP
ProP-SPP

Figure 3.14: Single core IPC improvement over no prefetching for all datacenter
workloads at 4GB/s bandwidth

and SPP. Since ProP is proactive (not reactive) in filtering prefetches, we use

profile-guided hints embedded in the data address to filter accesses. If the data

access is a bad candidate for prefetching, we filter the accesses from both train-

ing and iprediction. In addition, for ProP-SPP, we reduce the confidence thresh-

olding in SPP (from the default of 25% to 5%) to maximize coverage and use

profiling hints to improve accuracy. We use the 5% threshold to avoid prefetch-

ing on randomly observed deltas for a PC.

72

3.6 Evaluation

3.6.1 Single core results

Figure 3.14 shows that ProP benefits both BOP and SPP. In particular, ProP-BOP

achieves an IPC improvement of 4.5% over no prefetching, while the underlying

prefetcher (BOP) achieves an IPC improvement of just 0.2%. Coarse-grained

throttling with FDP is not very effective as it achieves an IPC improvement of

just 0.7%. ProP-SPP achieves an IPC improvement of 9.8%, that is 3.9% higher

than SPP, and 4% higher than PPF.

Both, ProP-BOP and ProP-SPP either match or outperform their respective

baselines for all the workloads. Workloads with interleaved streams of random

accesses and stride patterns, such as Tango, benefit the most from ProP. ProP

increases prefetch accuracy by filtering instructions with poor prefetchability,

which reduces bandwidth contention and cache pollution. In particular, for

Tango, ProP-BOP increases the prefetcher accuracy of BOP from 52% to 79%,

which reduces the memory traffic overhead of BOP from 62% to 11%. Similarly,

ProP-SPP has an L3 traffic overhead of just 15%, while PPF-SPP has a 30% traffic

overhead. At the same time, ProP-SPP has a coverage of 52.7%, which is 4.3%

higher than PPF-SPP. Hardware prefetch filtering techniques such as FDP-BOP

and PPF-SPP have limited precision parameters and thresholds that are tuned

for SPEC workloads, but do not generalize for unseen high instruction footprint

workloads in the datacenter.

Accuracy-coverage tradeoff: Figure 3.15 shows the accuracy-coverage trade-

off for all prefetcher configurations averaged across all datacenter workloads.

73

0 10 20 30 40 50 60 70
Coverage

0

20

40

60

80

100

Ac
cu

ra
cy

BOP
FDP-BOP
ProP-BOP

SPP
PPF-SPP
ProP-SPP

GeoMean
0

5

10

15

20

L2
 To

ta
l p

re
fe

tc
h

tra
ffi

c
ov

er
he

ad
 (%

) BOP

FDP-BOP

ProP-BOP

SPP

PPF-SPP

ProP-SPP

Figure 3.15: Accuracy-Coverage tradeoff of various prefetcher configurations,
averaged across all datacenter workloads. ProP-BOP and ProP-SPP allows bet-
ter coverage and accuracy tradeoff, and low traffic overhead.

ProP-BOP improves the accuracy of BOP to 79.5%, which is 16% higher than

BOP, while maintaining the same coverage. This accuracy improvement is also

reflected in the L2 traffic overhead reduction. ProP-BOP can reduce traffic over-

head by 11% over FDP-BOP.

ProP-SPP improves the accuracy over SPP by 3.5% and coverage by 7.3%.

It may seem surprising that ProP-SPP improves coverage since it only filters

prefetches, but as we note in Section 3.5.4, both ProP-SPP and PPF-SPP use a

confidence threshold that maximizes performance. The lower thresholds result

in a coverage improvement (discussed in Section 3.5.4). In particular, because

ProP leverages profiling to filter bad prefetches, it does best with a lower confi-

dence threshold that allows it to maximize the opportunity for useful prefetch-

ing. The profile guided filtering compensates for the accuracy. By contrast, PPF-

SPP’s increase in coverage comes at a cost of lower accuracy. This improved

tradeoff is reflected in L2 traffic overhead, where ProP-SPP reduces traffic by

9.5% over PPF-SPP. Overall, ProP allows a better accuracy-coverage tradeoff for

the underlying prefetcher, while reducing memory bandwidth contention.

74

(a) BOP (b) ProP-BOP

Figure 3.16: Library-level prefetch accuracies with baseline BOP and ProP-BOP.

Library-level performance improvement: Figure 3.16 shows the effect of

ProP on prefetching behavior for different libraries for the Merced workload.

ProP improves the prefetch accuracy of all libraries. Even though ProP can ef-

fectively filter at instruction-granularity, certain libraries such as TCMalloc and

load_isolation are not prefetch friendly, and get throttled to preserve high ac-

curacy prefetching. Other libraries such as foo observe a significant accuracy

improvement due to finer-grained filtering of instructions.

SPEC 2017 INT benchmarks: Figure 3.17 shows the IPC improvement re-

sults for all benchmarks in the SPEC 2017 INT suite. In addition to geomean

of all benchmarks, it also shows the geomean for the memory intensive work-

loads. On average, for memory intensive benchmarks, ProP-BOP achieves an

IPC improvement of 10.8%, which is 2.7% higher than BOP and 0.7% higher

than FDP-BOP. ProP-SPP achieves an IPC improvement of 12.7%, which is 3.3%

higher than SPP and 1.2% higher than PPF-SPP. ProP outperforms the underly-

ing prefetchers in most cases and we discuss a few interesting ones here. 520.

omnetpp observes a substantial performance increment of 6% by using ProP-BOP

over BOP, which regresses performance. BOP has a 75% L2 traffic overhead due

75

50
0.

pe
rlb

en
ch

_

50
2.

gc
c_

50
5.

m
cf

_

52
0.

om
ne

tp
p_

52
3.

xa
la

nc
bm

k_

52
5.

x2
64

_

53
1.

de
ep

sje
ng

_

54
1.

le
el

a_

54
8.

ex
ch

an
ge

2_

55
7.

xz
_

M
em

 In
t

Ge
oM

ea
n

5

0

5

10

15

20

25

30

35

IP
C

im
pr

ov
em

en
t (

%
) o

ve
r n

o
pr

ef
et

ch
in

g

BOP
FDP-BOP
ProP-BOP

SPP
PPF-SPP
ProP-SPP

Figure 3.17: Single core IPC improvement over no prefetching for SPEC work-
loads at 4GB/s bandwidth

to poor accuracy, and ProP-BOP reduces it to 27%, while improving the cover-

age slightly. FDP-BOP also throttles the prefetcher but due to uniform throttling

for a region, it reduces the coverage from 11% in ProP-BOP to 4.6%. 505.mcf is

an interesting case since BOP outperforms SPP, even though SPP has a higher

coverage. We find that BOP issues more timely prefetches compared to SPP, re-

sulting in a reduction in effective memory read latency. In this case, ProP-BOP

outperforms all prefetcher configurations including ProP-SPP.

3.6.2 Multi-core results

4-core: Figure 3.18 shows the IPC speedup of 100 groups of datacenter work-

loads on a 4-core system. The groups are sorted in order of increasing per-

formance on ProP-SPP. ProP-SPP outperforms the other two configurations -

76

0 20 40 60 80 100
Workloads sorted by speedup

1.00

1.05

1.10

1.15

1.20

1.25

W
ei

gh
te

d
IP

C
Sp

ee
du

p

SPP
PPF-SPP
ProP-SPP

Figure 3.18: IPC speedup for 100 datacenter workload mixes in a 4-core setting
at 16GB/s system bandwidth.

SPP and PPF-SPP in each of the 100 mixes. On average, ProP-SPP achieves a

speedup of 10.5%, which is 2.6% higher than PPF and 2.2% higher than SPP.

8-core: Figure 3.19 shows the IPC speedup of 100 groups of datacenter work-

loads on a 8-core system. ProP-SPP outperforms the other two configurations

- SPP and PPF-SPP in each of the 100 mixes. On average, ProP-SPP achieves a

speedup of 9.3%, which is 2.6% higher than PPF and 2.9% higher than SPP.

3.6.3 Context-switch sensitivity

Datacenter workloads often context switch within short instruction window in-

tervals, as discussed in the Section 3.2. Figure 3.20 evaluates average perfor-

77

0 20 40 60 80 100
Workloads sorted by speedup

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

W
ei

gh
te

d
IP

C
Sp

ee
du

p

SPP
PPF-SPP
ProP-SPP

Figure 3.19: IPC speedup for 100 datacenter workload mixes in a 8-core setting
at 32GB/s system bandwidth.

mance on datacenter workloads at 4GB/s, of SPP, PPF-SPP, ProP-SPP and SPP-

aggressive prefetchers, across different window lengths. SPP-aggressive has no

confidence threshold, unlike the default SPP with 25% threshold, and serves

as a configuration with no prefetch throttling/filtering. For a small instruction

window such as 500K, ProP-SPP improves IPC by 8.1% over the baseline, which

is 2.4% higher than SPP and 3.4% higher than PPF-SPP.

Figure 3.21a shows the traffic overhead of these prefetcher configurations

for different window lengths. For all prefetchers, L2 traffic overhead increases

with instruction interval, which can be attributed to warmup time of SPP. At

250K, even SPP-aggressive has a low traffic overhead due to limited prefetch-

ing opportunities identified by the prefetcher. PPF-SPP takes a while to reduce

L2 traffic overhead significantly compared to SPP-aggressive (no filtering). Fig-

78

250K 500K 1M 10M 50M
0

2

4

6

8

10
IP

C
im

pr
ov

em
en

t (
%

) o
ve

r n
o

pr
ef

et
ch

in
g

5.84 5.72 5.93 6.08
6.50

4.79 4.74 4.87

5.80

6.58

7.72
8.12

8.58

9.32
9.68

3.85

3.23
2.80

2.38
2.59

SPP PPF-SPP ProP-SPP SPP-aggressive

Figure 3.20: IPC speedup averaged for all datacenter workloads, simulated at
different instruction window lengths.

250K 500K 1M 10M 50M
Instruction window simulated

5

10

15

20

25

30

L2
 tr

af
fic

 o
ve

rh
ea

d
(%

)

PPF-SPP
ProP-SPP
SPP-aggressive

(a) L2 traffic overhead

250K 500K 1M 10M 50M
Instruction window simulated

0

10

20

30

40

50

60

Ba
d

pr
ef

et
ch

es
 fi

lte
re

d
(%

)

19.2 18.4 19.6

24.2
27.5

58.8
60.4 61.5 62.7 61.6

PPF-SPP ProP-SPP

(b) Useless prefetches filtered (%)

Figure 3.21: Prefetch traffic and prefetch filtering efectiveness of different
prefetchers at different instruction window sizes.

79

250K 500K 1M 10M 50M
Instruction window simulated

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

IP
C

im
pr

ov
em

en
t (

%
) o

ve
r P

PF
PPF-SPP
ProP-SPP

Figure 3.22: IPC improvement (%) of ProP-SPP over PPF-SPP across different
instruction windows.

ure 3.21b shows PPF’s filtering increases after 1M instructions. However, since

traffic overhead of underlying prefetcher at small window lengths is itself low,

the penalty of poor filtering on IPC is low as well. Due to this coupling effect,

the IPC performance of PPF-SPP is not greatly affected at the smallest instruc-

tion window. Figure 3.22 shows the IPC performance gap between ProP-SPP

(which needs no online learning) and PPF-SPP increases with larger window

sizes, and is the highest at 1M instructions (3.7%), and decreases later on as PPF

is able to learn. Since ProP does not need online training time, it’s performance

increases on every instruction window with increase in underlying prefetcher

activity. In addition, it will continue to perform well with prefetchers that have

a smaller warmup time.

80

4 8 16
Memory bandwdith (GB/s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

IP
C

im
pr

ov
em

en
t (

%
) o

ve
r n

o
pr

ef
et

ch
in

g

SPP
PPF-SPP
ProP-SPP

Figure 3.23: IPC improvement over no prefetching on all datacenter workloads,
for SPP, PPF and ProP at different system bandwidths.

3.6.4 Bandwidth sensitivity

In addition to results on the default system bandwidth of 4GB/s, we also mea-

sured performance on higher bandwidth availability for a single-core. Fig-

ure 3.23 shows IPC speedup over no prefetching for SPP, PPF-SPP and ProP-SPP

averaged across all datacenter workloads, measured at different system band-

width configurations. At high bandwidth of 16GB/s, ProP-SPP improves per-

formance by 4.4% over SPP and by 1.6% over PPF-SPP. This increase in perfor-

mance at higher bandwidths is due to the higher coverage of ProP-SPP by low-

ering the confidence thresholds of SPP, enabled due to accurate profile-guided

hints.

81

4 8 16
Memory bandwdith (GB/s)

1.100

1.125

1.150

1.175

1.200

1.225

1.250

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

SPP
PPF-SPP
ProP-SPP
ProP-SPP-aggressive
ProP-SPP-conservative

(a) Bravo

4 8 16
Memory bandwdith (GB/s)

1.20

1.22

1.24

1.26

1.28

1.30

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

SPP
PPF-SPP
ProP-SPP
ProP-SPP-aggressive
ProP-SPP-conservative

(b) Arizona

Figure 3.24: Workload-specific speedup for different prfetchers and profiling
thresholds of ProP (default, aggressive, conservative), across bandwidth config-
urations.

3.6.5 Workload-specific profile-model tuning

Figure 3.24 shows performance of different profiling model configurations

across system bandwidths. We vary the prefetch score threshold of the model,

below which the hardware prefetcher filters requests. The thresholds for this

experiment are 20% (aggressive), 30% (default) and 50% (conservative). Lower

threshold (ProP-SPP-aggressive) corresponds to lesser filtering and can often

maximizes coverage at the cost of accuracy. On average, ProP-SPP-aggressive

is the best performing configuration at high system bandwidth (16GB/s) and

achieves a 19% IPC improvement, which is 0.6% higher than ProP-SPP. For

Bravo, higher degree of filtering also improves prefetch coverage, which makes

ProP-SPP-aggressive perform well in all bandwidth configurations. Similarly,

Arizona benefits from ProP-SPP-conservative irrespective of system bandwidth.

Since ProP allows software control of prefetching, we can easily tune the model

to account for workload specific behavior to maximize performance.

82

1MB 2MB 4MB
0

2

4

6

8

10

IP
C

im
pr

ov
em

en
t (

%
) o

ve
r n

o
pr

ef
et

ch
in

g

SPP PPF-SPP ProP-SPP

Figure 3.25: IPC improvement over no prefetching on all datacenter workloads,
for SPP, PPF and ProP at different SLC sizes/core.

3.6.6 Different LLC sizes

Figure 3.25 shows the performance of prefetchers at different SLC sizes per core.

ProP-SPP outperforms SPP and PPF-SPP in all SLC configurations. At higher

SLC sizes, the no prefetching baseline performance improves and diminishes

the headroom for prefetcher improvements, which results in decrease in IPC im-

provements for all prefetching configurations. PPF-SPP performs slightly better

than SPP at higher L3 sizes, because the importance of prefetcher coverage in-

creases relative to accuracy. Even at 4MB/core, ProP-SPP outperforms other

configuration and improves IPC performance by 8.6%, which is 2.3% higher

than the next best configuration: PPF-SPP. Overall, the effectiveness of ProP-

SPP increases with smaller LLC/core configuration, due to higher prefetcher

coverage and accuracy.

83

3.7 Related Work

Existing prefetching solutions can be divided into 3 categories: hardware

prefetching, software prefetching and hardware-software co-design solutions.

Hardware prefetching: Section 1.2.2 discusses coverage-optimized and

bandwidth-efficient prefetchers in detail. We compare our work with throttling-

based bandwidth-efficient prefetching solutions that improve underlying

prefetcher accuracy by filtering prefetches. On the other hand, our method

should be compatible with composite-based bandwidth-efficient prefetchers,

where we could perform patter classification in the compiler and enable sub-

prefetchers using the classification hints.

Adaptive stream detection (ASD) [37] measures stream length histogram

(SLH) for a program region (every few instruction epochs), and uses it to fil-

ter prefetching. Since SLH is calculated for the aggregated region, individual

streams get filtered uniformly irrespective of their differences. In addition, there

is a warmup time associated with learning SLH.

FDP [107] uses dynamic metrics such as prefetcher accuracy and cache pol-

lution to control aggressiveness of the prefetcher. Similar to ASD, it uniformly

throttles prefetching based on the average accuracy of the prefetcher, which re-

sults in coverage loss.

Perceptron filter (PPF) [11] is a hardware-based fine-grained prefetch filter-

ing mechanism for Signature Path Prefetcher (SPP). They train using a set of 9

features based on page addresses, program counter and other SPP metrics such

as confidence, using ∼40KB on hardware, to filter SPP candidates. While hard-

84

ware filtering techniques have been shown to improve accuracy of underlying

prefetchers, they suffer from having a warmup time, large on-chip storage and

are fine-tuned to work well for a fixed set of benchmarks.

Software prefetching: Early software prefetching [17] used static induction

variable analysis to prefetch stride patterns inside loops. Mowry et al. [66] ex-

tended it by identifying highly reused addresses to limit prefetching, and us-

ing loop splitting to prefetch ahead without branch conditions. Ainsworth and

Jones [4] proposed automatic compiler-injected prefetching for more complex

irregular accesses. APT-GET [43] improved timeliness of these prefetches by

profiling Intel PMU counters.

Software prefetching methods have promise in niche memory access pat-

terns such as irregular accesses. These methods could work in tandem with

ProP, which is focused on improving hardware prefetcher accuracy for all

prefetches, that sotfware prefetching might not cover.

Hardware-software co-design: Guided-region prefetching (GRP) [113] uses

compiler static-analysis to detect loop bounds of load instructions. This is used

to guide the underlying region prefetcher [56] to limit the size of prefetching

region and reduce traffic overhead. GRP, unlike ProP, relies on static analysis

which can only find a small subset of strided instructions in large scale work-

loads with limited function inlining and complex control flow.

Efficient content-data prefetching (ECDP) [26] uses profile-guided hints to

score all possible prefetch offsets in a physical page, for each pointer-based

instruction. ECDP focuses on a domain-specific prefetcher [23] for linked

data structures (LDS), and requires a finer-grained one-hot encoded 16-bit hint

85

for each instruction. ProP is lightweight and versatile across state-of-the-art

prefetchers for regular and complex stride prefetching.

3.8 Conclusion

Hardware prefetchers are essential in backend-bound datacenter workloads but

often regress performance due to high bandwidth consumption, in an envi-

ronment with limited bandwidth availability. Hardware-software co-design

of prefetchers allows for a better division of responsibilities, compared to

hardware-only solutions. This co-design enables ProP to find a universally bet-

ter tradeoff point by improving both prefetcher metrics- accuracy and coverage.

86

CHAPTER 4

CONCLUSION AND FUTURE DIRECTIONS

Chapter 2 discusses improvements for auto-vectorization in compilers for

emerging vector ISAs. It also proposes ScaleIR to improve compiler code gen-

eration and create avenues for more vectorization opportunities. Chapter 3

uses compiler and profile-guided hints to improve hardware prefetcher perfor-

mance in bandwidth-constrained environments, often observed in datacenter

workloads. It designs and evaluates ProP, which can improve both prefetch ac-

curacy and coverage of state-of-the-art hardware prefetchers, and outperform

hardware-based prefetch filtering techniques.

In the next few sections, we discuss potential areas of future work that are

inspired from Chapter 2 and Chapter 3 results.

4.1 Length-agnostic speculative vectorization

Compiler vectorization techniques often embed fixed vector-length values to

determine vectorizability of loops. There are several such factors affecting vec-

torization such as static cross-iteration dependencies and cost-profitability anal-

ysis. However, length-agnostic vector extensions abstract-out the hardware vec-

tor length. Since vector length is unknown at compile-time, the compiler is

forced to deem loops which depend on vector length guarantees as not vectoriz-

able. This is the Faustian bargain that VLA makes: you gain portability, but you

sacrifice specificity!

We discuss an example of a loop pattern with cross-iteration dependencies:

for (int i = 8; i < N; i++) {

87

b[i] = b[i - 8] + a[i]; // vectorizable for VLEN <= 8

}

We observe that the code can be vectorized when hardware vector length is <=

8, but auto-vectorization on wider machines would lead to incorrect results. A

traditional compiler for length-agnostic ISAs such as RVV, would always choose

to not vectorize it, making it worse than fixed-length ISAs. We envision AdaVec,

which could generate optimal code for both ranges:

• Perform compiler analysis to determine a vector-length constraint. This

constraint is resolved dynamically and leads to two execution paths.

• Optimize both the paths independently. If the constraint is true, vectorize

the loop with the compile-time unknown hardware vector length. Other-

wise, depending on the ISA support and the constraint, configure vector

lanes to conform to the constraint or execute scalar code. RVV provides

an opportunity to use vsetvl instructions to dynamically configure the

hardware vector length. In other length-agnostic ISAs such as ARM SVE,

predication can be useful to switch off some vector lanes.

We illustrate vectorization of the loop pattern above, using AdaVec in length-

agnostic RVV setting:

// dynamic hardware vector length

vlen = get_hw_vlen();

if (vlen<=8){ // determine constraint

for (int i = 8; i < N; i+=vlen) {

b[i:i + vlen] = b[i - 8:i - 8 + vlen] + a[i:i + vlen];

}

88

}

else{

//set vector length to 8

set_vl(8);

for (int i = 8; i < N; i+=8) {

b[i:i + 8] = b[i - 8:i] + a[i:i + 8];

}

}

AdaVec remains length agnostic i.e., portable across all vector hardware, but

also gets the benefit of length-specific vectorization. Since the speculation hap-

pens outside the loop, the overhead of AdaVec is negligible compared to the

vectorization benefits.

A significant contribution of AdaVec would be decoupling vectorization anal-

ysis from the hardware vector length. This would entail finding vector-length

constraint for each analysis and composing them together. A good baseline for

finding constaints could be iterating over various vector lengths and keeping

the lowest-cost non-identical variants. A more sophisticated version could some

analysis feedback from the vectorizer. It would also be interesting to explore dy-

namically configured hardware vector length to conform to a constraint. This

technique combines the benefits of user-configured fixed-width vectors with

scalability of length-agnostic ISAs.

Applications such as fixed-length tiling in matrix multiplications or

window-buffering in 3x3 convolution filters, would benefit from AdaVec’s

adaptive approach.

89

4.2 Programming model for scalable vectors

There are a range of existing vector programming models with varying degrees

of programmer control and intrinsic abstraction. Programming models such as

OpenMP [93] and Cilk [95] are developed for multi-core programming instead

of SIMD vectorization and provide implicit vectorization opportunities using

pragma. SIMD-specific C++ extensions such as Boost [29], provide templated

vector data structure for ISA portability and extend libraries to support special

functions such as ”shifting” operators common in image processing workloads,

but programmer effort is required to explictly vectorize the code. Sierra [55]

allows programmer to program at a higher level by automatically vectorizing

control flow statements using mask generation and providing memory layout

optimizations implicitly using vector primitives.

However, all the existing programming models are based on traditional ISAs

and require compile-time known vector lengths. Memory layout optimizations

such as Hybrid SoA (Structure of Arrays) depend on slicing arrays based on

vector lengths. In addition, higher-level models such as Sierra, build their own

compiler support for easier programmability, loosing out on more powerful

mainstream compilers.

As discussed in Chapter 2, we believe that programming applications for

length-agnostic designs will require both programmer effort and compiler sup-

port. Hence, a programming model that captures programmer led algorithmic

transformations while letting the compiler focus on auto-vectorization, could

be an interesting research direction. However, we are not entirely certain how

it would allow programmer-guided explicit vectorization hints while allowing

90

the compiler to vectorize an otherwise scalar-like code. We envision the follow-

ing:

• Raising dynamic-vector length primitives to enable the programmer to ex-

press variable vector length.

• Express higher-level hints to aid vectorization analysis, possibly for outer-

loop vectorization or specific instruction selection.

4.3 Multiple hardware prefetchers

Both Intel and ARM CPUs often contain multiple hardware prefetchers issu-

ing prefetches concurrently based on the same memory access stream. This is

done to cover a wider range of access patterns. However, since this can lead to

excess traffic, these systems also come with throttling mechansims to improve

accuracy.

Most hardware prefetchers proposals in academic research work, as dis-

cussed in Section 1.2.2, use a single prefetcher to maximize performance. Com-

posite prefetcher models [49, 74, 18] use an ensemble of accurate sub-prefetchers

for specific memory access patterns to improve overall prefetching accuracy and

coverage. Since classification of memory access patterns are done at the hard-

ware level, it faces two challenges: (1) requires microarchitectural changes to

identify loops and pointer-based program semantics to detect access patterns;

(2) on-chip tables to track per-PC classifications of streams can get costly for

high instruction footprint datacenter workloads.

ProP, discussed in Chapter 3, can be expanded to detect multiple prefetch ac-

91

cess patterns in the profiling stage and use hints to guide a composite prefetcher

model or select between multiple prefetchers (in Intel/ARM machines).

92

BIBLIOGRAPHY

[1] Arm cortex-a series programmer’s guide for armv8-a: Virtual address tag-
ging. https://developer.arm.com/documentation/den0024/
a/ch12s05s01.

[2] Dennis Abts, Abdulla Bataineh, Steve Scott, Greg Faanes, Jim
Schwarzmeier, Eric Lundberg, Tim Johnson, Mike Bye, and Gerald
Schwoerer. The cray blackwidow: a highly scalable vector multiprocessor.
In Proceedings of the 2007 ACM/IEEE conference on Supercomputing, 2007.

[3] Neil Adit and Adrian Sampson. Performance left on the table: an evalua-
tion of compiler autovectorization for risc-v. IEEE Micro, 2022.

[4] Sam Ainsworth and Timothy M Jones. Software prefetching for indirect
memory accesses. In 2017 IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO), 2017.

[5] Arm. Arm neon. https://developer.arm.com/Architectures/
Neon.

[6] Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu Cho,
Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz,
Tipp Moseley, and Parthasarathy Ranganathan. Asmdb: understanding
and mitigating front-end stalls in warehouse-scale computers. In Proceed-
ings of the 46th International Symposium on Computer Architecture, 2019.

[7] Jean-Loup Baer and Tien-Fu Chen. An effective on-chip preloading
scheme to reduce data access penalty. In Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, 1991.

[8] Sara S Baghsorkhi, Nalini Vasudevan, and Youfeng Wu. Flexvec: Auto-
vectorization for irregular loops. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2016.

[9] Thomas Ball and James R Larus. Branch prediction for free. ACM SIG-
PLAN Notices, 1993.

[10] Philip Bedoukian, Neil Adit, Edwin Peguero, and Adrian Sampson.
Software-defined vector processing on manycore fabrics. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture, 2021.

93

https://developer.arm.com/documentation/den0024/a/ch12s05s01
https://developer.arm.com/documentation/den0024/a/ch12s05s01
https://developer.arm.com/Architectures/Neon
https://developer.arm.com/Architectures/Neon

[11] Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V Gratz, and
Daniel A Jiménez. Perceptron-based prefetch filtering. In Proceedings of
the 46th International Symposium on Computer Architecture, 2019.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna,
Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH computer
architecture news, 2011.

[13] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simu-
lator. SIGARCH Computer Architecture News, 2011.

[14] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infras-
tructure for adaptive dynamic optimization. In International Symposium on
Code Generation and Optimization, 2003. CGO 2003., 2003.

[15] Mark Buckler, Neil Adit, Yuwei Hu, Zhiru Zhang, and Adrian Sampson.
Dense pruning of pointwise convolutions in the frequency domain. arXiv
preprint arXiv:2109.07707, 2021.

[16] David Callahan, Jack J Dongarra, and David Levine. Vectorizing compilers:
A test suite and results. Argonne National Laboratory, 1988.

[17] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetch-
ing. ACM SIGARCH Computer Architecture News, 1991.

[18] Gino Chacon, Elba Garza, Alexandra Jimborean, Alberto Ros, Paul V
Gratz, Daniel A Jiménez, and Samira Mirbagher-Ajorpaz. Composite in-
struction prefetching. In 2022 IEEE 40th International Conference on Com-
puter Design (ICCD), 2022.

[19] Tien-Fu Chen and Jean-Loup Baer. Effective hardware-based data
prefetching for high-performance processors. IEEE transactions on com-
puters, 1995.

[20] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE journal of solid-state circuits, 2016.

94

[21] Yuan Chou. Low-cost epoch-based correlation prefetching for commer-
cial applications. In 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007), 2007.

[22] I-Hsin Chung, Changhoan Kim, Hui-Fang Wen, and Guojing Cong. Ap-
plication data prefetching on the ibm blue gene/q supercomputer. In
SC’12: Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 2012.

[23] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. A stateless,
content-directed data prefetching mechanism. ACM SIGPLAN Notices,
2002.

[24] Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawai, Austin
Rovinski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao, Steve Dai, et al.
The celerity open-source 511-core risc-v tiered accelerator fabric: Fast ar-
chitectures and design methodologies for fast chips. IEEE Micro, 2018.

[25] Keith Diefendorff, Pradeep K Dubey, Ron Hochsprung, and HASH Scale.
Altivec extension to powerpc accelerates media processing. IEEE Micro,
2000.

[26] Eiman Ebrahimi, Onur Mutlu, and Yale N Patt. Techniques for
bandwidth-efficient prefetching of linked data structures in hybrid
prefetching systems. In 2009 IEEE 15th International Symposium on High
Performance Computer Architecture, 2009.

[27] Roger Espasa, Federico Ardanaz, Joel Emer, Stephen Felix, Julio Gago,
Roger Gramunt, Isaac Hernandez, Toni Juan, Geoff Lowney, Matthew
Mattina, et al. Tarantula: A vector extension to the alpha architecture.
ACM SIGARCH Computer Architecture News, 2002.

[28] Roger Espasa, Mateo Valero, and James E Smith. Vector architectures:
past, present and future. In Proceedings of the 12th international conference
on Supercomputing, pages 425–432, 1998.

[29] Pierre Estérie, Joel Falcou, Mathias Gaunard, and Jean-Thierry Lapresté.
Boost. simd: generic programming for portable simdization. In Proceed-
ings of the 2014 Workshop on Programming models for SIMD/Vector processing,
2014.

[30] Timothée Ewart, Fabien Delalondre, and Felix Schürmann. Cyme: a li-

95

brary maximizing simd computation on user-defined containers. In Inter-
national Supercomputing Conference, 2014.

[31] Keith I Farkas, Paul Chow, Norman P Jouppi, and Zvonko Vranesic.
Memory-system design considerations for dynamically-scheduled pro-
cessors. ACM SIGARCH Computer Architecture News, 1997.

[32] Joseph A Fisher, John R Ellis, John C Ruttenberg, and Alexandru Nicolau.
Parallel processing: A smart compiler and a dumb machine. In Proceedings
of the 1984 SIGPLAN symposium on Compiler construction, 1984.

[33] Free Software Foundation. Auto-vectorization in gcc. https://gcc.
gnu.org/projects/tree-ssa/vectorization.html.

[34] Free Software Foundation. Gcc. https://gcc.gnu.org/.

[35] J Gindele. Buffer block prefetching method. IBM Technical Disclosure Bul-
letin, 1977.

[36] RG Hintz. Control data star-100 processor design. In COMPCOM, 1972.

[37] Ibrahim Hur and Calvin Lin. Memory prefetching using adaptive stream
detection. In 2006 39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO’06), 2006.

[38] Intel. Intel sse4 programming reference. https://www.intel.
com/content/dam/develop/external/us/en/documents/
18187-d9156103.pdf, 2007.

[39] Intel. Intel® architecture instruction set extensions and future features.
chapter 6. 2023.

[40] Yasuo Ishii, Mary Inaba, and Kei Hiraki. Access map pattern matching
for high performance data cache prefetch. Journal of Instruction-Level Par-
allelism, 2011.

[41] Akanksha Jain and Calvin Lin. Linearizing irregular memory accesses
for improved correlated prefetching. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 247–259,
2013.

96

https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/
https://www.intel.com/content/dam/develop/external/us/en/documents/18187-d9156103.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/18187-d9156103.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/18187-d9156103.pdf

[42] Akanksha Jain, Hannah Lin, Carlos Villavieja, Baris Kasikci, Chris Ken-
nelly, Milad Hashemi, and Parthasarathy Ranganathan. Limoncello:
Prefetchers for scale. In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, 2024.

[43] Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and
Heiner Litz. Apt-get: Profile-guided timely software prefetching. In Pro-
ceedings of the Seventeenth European Conference on Computer Systems, 2022.

[44] Norman P Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. ACM
SIGARCH Computer Architecture News, 1990.

[45] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor pro-
cessing unit. In Proceedings of the 44th annual international symposium on
computer architecture, 2017.

[46] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling a
warehouse-scale computer. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, 2015.

[47] Tanvir Ahmed Khan, Muhammed Ugur, Krishnendra Nathella, Dam Sun-
woo, Heiner Litz, Daniel A Jiménez, and Baris Kasikci. Whisper: Profile-
guided branch misprediction elimination for data center applications.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2022.

[48] Jinchun Kim, Seth H Pugsley, Paul V Gratz, AL Narasimha Reddy,
Chris Wilkerson, and Zeshan Chishti. Path confidence based lookahead
prefetching. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[49] Sushant Kondguli and Michael Huang. Division of labor: A more effec-
tive approach to prefetching. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 2018.

[50] Sanjeev Kumar and Christopher Wilkerson. Exploiting spatial locality
in data caches using spatial footprints. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, 1998.

97

[51] Samuel Larsen and Saman Amarasinghe. Exploiting superword level par-
allelism with multimedia instruction sets. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2000.

[52] Nikita Lazarev, Neil Adit, Shaojie Xiang, Zhiru Zhang, and Christina De-
limitrou. Dagger: Towards efficient rpcs in cloud microservices with near-
memory reconfigurable nics. IEEE Computer Architecture Letters, 2020.

[53] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina De-
limitrou. Dagger: efficient and fast rpcs in cloud microservices with near-
memory reconfigurable nics. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems, 2021.

[54] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. When prefetching works,
when it doesn’t, and why. ACM Transactions on Architecture and Code Op-
timization (TACO), 2012.

[55] Roland Leißa, Immanuel Haffner, and Sebastian Hack. Sierra: a simd ex-
tension for c++. In Proceedings of the 2014 Workshop on Programming models
for SIMD/Vector processing, 2014.

[56] Wei-Fen Lin, Steven K Reinhardt, and Doug Burger. Reducing dram la-
tencies with an integrated memory hierarchy design. In Proceedings HPCA
Seventh International Symposium on High-Performance Computer Architec-
ture, 2001.

[57] LLVM. The llvm compiler infrastructure. https:
//github.com/llvm/llvm-project/commit/
e70533ae6c57756111689abf7826a3c632255866, April, 2022.

[58] Chi-Keung Luk and Todd C Mowry. Compiler-based prefetching for re-
cursive data structures. In Proceedings of the seventh international confer-
ence on Architectural support for programming languages and operating sys-
tems, 1996.

[59] Scott Mahlke and Balas Natarajan. Compiler synthesized dynamic branch
prediction. In Proceedings of the 29th Annual IEEE/ACM International Sym-
posium on Microarchitecture. MICRO 29, 1996.

[60] Saeed Maleki, Yaoqing Gao, Maria J Garzar, Tommy Wong, David A
Padua, et al. An evaluation of vectorizing compilers. In International Con-
ference on Parallel Architectures and Compilation Techniques (PACT), 2011.

98

https://github.com/llvm/llvm-project/commit/e70533ae6c57756111689abf7826a3c632255866
https://github.com/llvm/llvm-project/commit/e70533ae6c57756111689abf7826a3c632255866
https://github.com/llvm/llvm-project/commit/e70533ae6c57756111689abf7826a3c632255866

[61] Charith Mendis and Saman Amarasinghe. goslp: globally optimized su-
perword level parallelism framework. Proceedings of the ACM on Program-
ming Languages, 2018.

[62] Pierre Michaud. Best-offset hardware prefetching. In 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA), 2016.

[63] Olga V Moldovanova and Mikhail G Kurnosov. Auto-vectorization of
loops on intel 64 and intel xeon phi: Analysis and evaluation. In In-
ternational Conference on Parallel Computing Technologies, pages 143–150.
Springer, 2017.

[64] Todd Mowry and Anoop Gupta. Tolerating latency through software-
controlled prefetching in shared-memory multiprocessors. Journal of par-
allel and Distributed Computing, 1991.

[65] Todd C Mowry, Angela K Demke, Orran Krieger, et al. Automatic
compiler-inserted i/o prefetching for out-of-core applications. In OSDI,
1996.

[66] Todd C Mowry, Monica S Lam, and Anoop Gupta. Design and evaluation
of a compiler algorithm for prefetching. ACM Sigplan Notices, 1992.

[67] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata
Ausavarungnirun. A modern primer on processing in memory. In
Emerging Computing: From Devices to Systems: Looking Beyond Moore and
Von Neumann. Springer, 2022.

[68] Ramadass Nagarajan, Karthikeyan Sankaralingam, Doug Burger, and
Stephen W Keckler. A design space evaluation of grid processor archi-
tectures. In Proceedings. 34th ACM/IEEE International Symposium on Mi-
croarchitecture. MICRO-34, 2001.

[69] Kyle J Nesbit and James E Smith. Data cache prefetching using a global
history buffer. In 10th International Symposium on High Performance Com-
puter Architecture (HPCA’04). IEEE, 2004.

[70] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. A com-
piler infrastructure for accelerator generators. In Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2021.

99

[71] Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-vectorization of inter-
leaved data for simd. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), 2006.

[72] Dorit Nuzman and Ayal Zaks. Outer-loop vectorization: revisited for
short simd architectures. In International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), 2008.

[73] NVIDIA. Nvidia cuda compiler driver nvcc. https://docs.nvidia.
com/cuda/cuda-compiler-driver-nvcc/.

[74] Samuel Pakalapati and Biswabandan Panda. Bouquet of instruction
pointers: Instruction pointer classifier-based spatial hardware prefetch-
ing. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020.

[75] Subbarao Palacharla and Richard E Kessler. Evaluating stream buffers as a
secondary cache replacement. In Proceedings of the 21st annual international
symposium on Computer architecture, 1994.

[76] Biswabandan Panda. Clip: Load criticality based data prefetching for
bandwidth-constrained many-core systems. In Proceedings of the 56th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2023.

[77] Alex Peleg and Uri Weiser. Mmx technology extension to the intel archi-
tecture. IEEE micro, 1996.

[78] Andrea Pellegrini. Arm neoverse n2: Arm’s 2 nd generation high per-
formance infrastructure cpus and system ips. In 2021 IEEE Hot Chips 33
Symposium (HCS), 2021.

[79] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sher-
wood, and Brad Calder. Using simpoint for accurate and efficient simula-
tion. ACM SIGMETRICS Performance Evaluation Review, 2003.

[80] Karl Pettis and Robert C Hansen. Profile guided code positioning. In
Proceedings of the ACM SIGPLAN 1990 conference on Programming language
design and implementation, 1990.

[81] Matt Pharr and William R Mark. ispc: A spmd compiler for high-
performance cpu programming. In 2012 Innovative Parallel Computing (In-
Par), 2012.

100

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

[82] Leonardo Piga, Iyswarya Narayanan, Aditya Sundarrajan, Matt Skach,
Qingyuan Deng, Biswadip Maity, Manoj Chakkaravarthy, Alison Huang,
Abhishek Dhanotia, and Parth Malani. Expanding datacenter capacity
with dvfs boosting: A safe and scalable deployment experience. In Pro-
ceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1, 2024.

[83] Andrei Poenaru and Simon McIntosh-Smith. Evaluating the effectiveness
of a vector-length-agnostic instruction set. In European Conference on Par-
allel Processing, 2020.

[84] Angela Pohl, Biagio Cosenza, Mauricio Alvarez Mesa, Chi Ching Chi,
and Ben Juurlink. An evaluation of current simd programming mod-
els for c++. In Proceedings of the 3rd Workshop on Programming Models for
SIMD/Vector Processing, pages 1–8, 2016.

[85] Angela Pohl, Mirko Greese, Biagio Cosenza, and Ben Juurlink. A per-
formance analysis of vector length agnostic code. In 2019 International
Conference on High Performance Computing & Simulation (HPCS), 2019.

[86] Vasileios Porpodas, Alberto Magni, and Timothy M Jones. Pslp: Padded
slp automatic vectorization. In 2015 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), 2015.

[87] Vasileios Porpodas, Rodrigo CO Rocha, and Luı́s FW Góes. Vw-slp: auto-
vectorization with adaptive vector width. In Proceedings of the 27th Interna-
tional Conference on Parallel Architectures and Compilation Techniques, 2018.

[88] Seth H Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang,
Robert L Scott, Aamer Jaleel, Shih-Lien Lu, Kingsum Chow, and Rajeev
Balasubramonian. Sandbox prefetching: Safe run-time evaluation of ag-
gressive prefetchers. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA), 2014.

[89] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: a language and com-
piler for optimizing parallelism, locality, and recomputation in image pro-
cessing pipelines. Acm Sigplan Notices, 2013.

[90] Mahesh Rajan, Douglas W Doerfler, Mike Tupek, and Simon Hammond.
An investigation of compiler vectorization on current and next-generation
intel processors using benchmarks and sandia’s sierra applications. 2015.

101

[91] Cristóbal Ramı́rez, César Alejandro Hernández, Oscar Palomar, Osman
Unsal, Marco Antonio Ramı́rez, and Adrián Cristal. A risc-v simulator
and benchmark suite for designing and evaluating vector architectures.
ACM Transactions on Architecture and Code Optimization (TACO), 2020.

[92] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert
Hundt. Google-wide profiling: A continuous profiling infrastructure for
data centers. IEEE micro, 2010.

[93] RISC-V 2021. Openmp application programming inter-
face. https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf, 2018.

[94] RISC-V 2021. Working draft of the proposed risc-v v vector extension.
https://github.com/riscv/riscv-v-spec, 2021.

[95] Arch D Robison. Composable parallel patterns with intel cilk plus. Com-
puting in Science & Engineering, 2013.

[96] Richard M Russell. The cray-1 computer system. Communications of the
ACM, 1978.

[97] Richard M Russell. The cray-1 computer system. Communications of the
ACM, 1978.

[98] Suleyman Sair, Timothy Sherwood, and Brad Calder. A decoupled
predictor-directed stream prefetching architecture. IEEE Transactions on
Computers, 2003.

[99] Jennifer B Sartor, Subramaniam Venkiteswaran, Kathryn S McKinley, and
Zhenlin Wang. Cooperative caching with keep-me and evict-me. In 9th
Annual Workshop on Interaction between Compilers and Computer Architec-
tures (INTERACT’05), 2005.

[100] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris
Wilkerson, Seth H Pugsley, and Zeshan Chishti. Efficiently prefetching
complex address patterns. In Proceedings of the 48th International Sympo-
sium on Microarchitecture, 2015.

[101] Sergi Siso, Wes Armour, and Jeyarajan Thiyagalingam. Evaluating auto-
vectorizing compilers through objective withdrawal of useful informa-
tion. ACM Transactions on Architecture and Code Optimization (TACO), 2019.

102

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://github.com/riscv/riscv-v-spec

[102] Alan Jay Smith. Sequential program prefetching in memory hierarchies.
Computer, 1978.

[103] Alan Jay Smith. Cache memories. ACM Computing Surveys (CSUR), 1982.

[104] Eric Smith. Memory bandwidth per core and per socket for in-
tel xeon and amd epyc. https://www.servethehome.com/
memory-bandwidth-per-core-and-per-socket-for-intel-xeon-and-amd-epyc/.

[105] Stephen Somogyi, Thomas F Wenisch, Anastasia Ailamaki, and Babak
Falsafi. Spatio-temporal memory streaming. ACM SIGARCH Computer
Architecture News, 2009.

[106] Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak Fal-
safi, and Andreas Moshovos. Spatial memory streaming. ACM SIGARCH
Computer Architecture News, 2006.

[107] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N Patt. Feed-
back directed prefetching: Improving the performance and bandwidth-
efficiency of hardware prefetchers. In 2007 IEEE 13th International Sympo-
sium on High Performance Computer Architecture, 2007.

[108] Akshitha Sriraman and Abhishek Dhanotia. Accelerometer: Understand-
ing acceleration opportunities for data center overheads at hyperscale.
In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 733–750,
2020.

[109] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Ey-
ole, Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Mar-
tinez, Nathanael Premillieu, et al. The arm scalable vector extension. IEEE
Micro, 2017.

[110] Majedul Haque Sujon, R Clint Whaley, and Qing Yi. Vectorization past
dependent branches through speculation. In Proceedings of the 22nd In-
ternational Conference on Parallel Architectures and Compilation Techniques,
2013.

[111] Tuan Ta, Khalid Al-Hawaj, Nick Cebry, Yanghui Ou, Eric Hall, Courtney
Golden, and Christopher Batten. Big. vlittle: On-demand data-parallel
acceleration for mobile systems on chip. In 2022 55th IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2022.

103

https://www.servethehome.com/memory-bandwidth-per-core-and-per-socket-for-intel-xeon-and-amd-epyc/
https://www.servethehome.com/memory-bandwidth-per-core-and-per-socket-for-intel-xeon-and-amd-epyc/

[112] Alexa VanHattum, Rachit Nigam, Vincent T Lee, James Bornholt, and
Adrian Sampson. Vectorization for digital signal processors via equality
saturation. In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, 2021.

[113] Zhenlin Wang, Doug Burger, Kathryn S McKinley, Steven K Reinhardt,
and Charles C Weems. Guided region prefetching: A cooperative hard-
ware/software approach. ACM SIGARCH Computer Architecture News,
2003.

[114] Zhenlin Wang, Kathryn S McKinley, Arnold L Rosenberg, and Charles C
Weems. Using the compiler to improve cache replacement decisions. In
Proceedings. International Conference on Parallel Architectures and Compilation
Techniques, 2002.

[115] WJ Watson. The ti asc: a highly modular and flexible super computer
architecture. In Proceedings of the December 5-7, 1972, fall joint computer
conference, part I, 1972.

[116] Shlomo Weiss and James E Smith. A study of scalar compilation tech-
niques for pipelined supercomputers. ACM SIGARCH Computer Architec-
ture News, 1987.

[117] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi,
and Andreas Moshovos. Temporal streams in commercial server applica-
tions. In 2008 IEEE International Symposium on Workload Characterization,
2008.

[118] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi,
and Andreas Moshovos. Making address-correlated prefetching practical.
IEEE micro, 2010.

[119] XLA. Xla (accelerated linear algebra). https://github.com/
openxla/xla.

[120] Zhongcheng Zhang, Yan Ou, Ying Liu, Chenxi Wang, Yongbin Zhou, Xi-
aoyu Wang, Yuyang Zhang, Yucheng Ouyang, Jiahao Shan, Ying Wang,
et al. Occamy: Elastically sharing a simd co-processor across multiple
cpu cores. In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume
3, 2023.

104

https://github.com/openxla/xla
https://github.com/openxla/xla

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by
ProQuest LLC a part of Clarivate ().

Copyright of the Dissertation is held by the Author unless otherwise noted.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

ProQuest LLC
789 East Eisenhower Parkway

Ann Arbor, MI 48108 USA

31556872

2025

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Vector computation
	Vector architectures
	Vector ISAs
	Auto-vectorizing compilers

	Hardware Prefetchers
	Prefetcher design principles
	Types of Prefetchers

	Thesis Overview
	Collaboration, Other Work, and Funding

	Evaluating Compiler Auto-Vectorization for RISC-V Vector
	Introduction
	Related Work
	Experimental Setup
	Synthetic Loop Study
	Application Benchmark Study
	Unmodified code
	Vector math libraries
	Vector-scalar width mismatch
	Dynamic vector length scalability
	Shuffle pattern detection
	Algorithm driven Loop Fusion
	Vectorizing specific loops
	Adapt algorithms to the microarchitecture

	Solution proposal: Scalable compiler IR
	Conclusion

	Software-Controlled Hardware Prefetching
	Introduction
	Motivation
	Reactive Throttling
	Predictive Throttling

	Profiling Insights
	Program counter maps to distinct prefetching behavior
	Code context and data features can enhance prefetching understanding

	Programmable Prefetching
	Profiling Analysis
	Communicating Prefetch Hints to Hardware
	Prefetch Filtering in Hardware

	Methodology
	Performance Model
	Workloads
	Profiling methodology
	Baselines

	Evaluation
	Single core results
	Multi-core results
	Context-switch sensitivity
	Bandwidth sensitivity
	Workload-specific profile-model tuning
	Different LLC sizes

	Related Work
	Conclusion

	Conclusion and Future Directions
	Length-agnostic speculative vectorization
	Programming model for scalable vectors
	Multiple hardware prefetchers

	Bibliography

